Nuprl Lemma : sd_ordered_cons_lemma

as,a,s:Top.  (sd_ordered([a as]) before(a;as) ∧b sd_ordered(as))


Proof




Definitions occuring in Statement :  sd_ordered: sd_ordered(as) before: before(u;ps) cons: [a b] band: p ∧b q top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T sd_ordered: sd_ordered(as) ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}as,a,s:Top.    (sd\_ordered([a  /  as])  \msim{}  before(a;as)  \mwedge{}\msubb{}  sd\_ordered(as))



Date html generated: 2016_05_16-AM-08_15_08
Last ObjectModification: 2015_12_28-PM-06_28_49

Theory : polynom_2


Home Index