Nuprl Lemma : sd_ordered_cons_lemma
∀as,a,s:Top.  (sd_ordered([a / as]) ~ before(a;as) ∧b sd_ordered(as))
Proof
Definitions occuring in Statement : 
sd_ordered: sd_ordered(as)
, 
before: before(u;ps)
, 
cons: [a / b]
, 
band: p ∧b q
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
sd_ordered: sd_ordered(as)
, 
ycomb: Y
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
top_wf, 
list_ind_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}as,a,s:Top.    (sd\_ordered([a  /  as])  \msim{}  before(a;as)  \mwedge{}\msubb{}  sd\_ordered(as))
Date html generated:
2016_05_16-AM-08_15_08
Last ObjectModification:
2015_12_28-PM-06_28_49
Theory : polynom_2
Home
Index