Nuprl Lemma : mset_on_grp_eq

g:Top. (MSet{g↓set} MSet{g↓oset})


Proof




Definitions occuring in Statement :  mset: MSet{s} top: Top all: x:A. B[x] sqequal: t oset_of_ocmon: g↓oset dset_of_mon: g↓set
Definitions unfolded in proof :  mset: MSet{s} dset_of_mon: g↓set set_car: |p| pi1: fst(t) oset_of_ocmon: g↓oset all: x:A. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid hypothesis

Latex:
\mforall{}g:Top.  (MSet\{g\mdownarrow{}set\}  \msim{}  MSet\{g\mdownarrow{}oset\})



Date html generated: 2016_05_16-AM-08_25_47
Last ObjectModification: 2015_12_28-PM-06_38_33

Theory : polynom_3


Home Index