Nuprl Lemma : omral_fact_a

g:OCMon. ∀r:CDRng. ∀ps:|omral(g;r)|.  (ps (msFor{omral_alg(g;r)↓grp} k' ∈ dom(ps). inj(k',ps[k'])) ∈ |omral(g;r)|)


Proof




Definitions occuring in Statement :  omral_alg: omral_alg(g;r) omral_inj: inj(k,v) omral_dom: dom(ps) omralist: omral(g;r) lookup: as[k] mset_for: mset_for grp_of_module: m↓grp all: x:A. B[x] equal: t ∈ T cdrng: CDRng rng_zero: 0 oset_of_ocmon: g↓oset ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  mset_for: mset_for mon_for: For{g} x ∈ as. f[x] oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) oal_mon: oal_mon(a;b) grp_op: * pi2: snd(t) grp_id: e grp_of_module: m↓grp add_grp_of_rng: r↓+gp rng_of_alg: a↓rg rng_plus: +r rng_zero: 0 omral_alg: omral_alg(g;r) alg_plus: a.plus alg_zero: a.zero omral_plus: ps ++ qs omral_zero: 00g,r
Lemmas referenced :  omral_fact
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lemma_by_obid

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps:|omral(g;r)|.
    (ps  =  (msFor\{omral\_alg(g;r)\mdownarrow{}grp\}  k'  \mmember{}  dom(ps).  inj(k',ps[k'])))



Date html generated: 2016_05_16-AM-08_24_21
Last ObjectModification: 2015_12_28-PM-06_39_07

Theory : polynom_3


Home Index