Nuprl Lemma : omral_fact

g:OCMon. ∀r:CDRng. ∀ps:|omral(g;r)|.  (ps (msFor{oal_mon(g↓oset;r↓+gp)} k' ∈ dom(ps). inj(k',ps[k'])) ∈ |omral(g;r)|)


Proof




Definitions occuring in Statement :  omral_inj: inj(k,v) omral_dom: dom(ps) omralist: omral(g;r) oal_mon: oal_mon(a;b) lookup: as[k] mset_for: mset_for all: x:A. B[x] equal: t ∈ T add_grp_of_rng: r↓+gp cdrng: CDRng rng_zero: 0 oset_of_ocmon: g↓oset ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B ocmon: OCMon omon: OMon so_lambda: λ2x.t[x] prop: and: P ∧ Q abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cand: c∧ B add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) pi1: fst(t) omralist: omral(g;r) omral_dom: dom(ps) omral_inj: inj(k,v)
Lemmas referenced :  oalist_fact oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf grp_car_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf cdrng_is_abdmonoid cdrng_wf ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality applyEquality sqequalRule instantiate hypothesis because_Cache lambdaEquality productEquality setElimination rename cumulativity universeEquality functionEquality unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality independent_pairFormation

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps:|omral(g;r)|.
    (ps  =  (msFor\{oal\_mon(g\mdownarrow{}oset;r\mdownarrow{}+gp)\}  k'  \mmember{}  dom(ps).  inj(k',ps[k'])))



Date html generated: 2017_10_01-AM-10_05_25
Last ObjectModification: 2017_03_03-PM-01_11_53

Theory : polynom_3


Home Index