Nuprl Lemma : oalist_fact
∀a:LOSet. ∀b:AbDMon. ∀ps:|oal(a;b)|.  (ps = (msFor{oal_mon(a;b)} k' ∈ dom(ps). inj(k',ps[k'])) ∈ |oal(a;b)|)
Proof
Definitions occuring in Statement : 
oal_inj: inj(k,v), 
oal_mon: oal_mon(a;b), 
lookup: as[k], 
oal_dom: dom(ps), 
oalist: oal(a;b), 
mset_for: mset_for, 
all: ∀x:A. B[x], 
equal: s = t ∈ T, 
abdmonoid: AbDMon, 
grp_id: e, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
dset: DSet, 
uall: ∀[x:A]. B[x], 
abdmonoid: AbDMon, 
dmon: DMon, 
mon: Mon, 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
dset_list: s List, 
set_prod: s × t, 
dset_of_mon: g↓set, 
so_apply: x[s], 
implies: P ⇒ Q, 
top: Top, 
null_mset: 0{s}, 
oal_dom: dom(ps), 
mk_mset: mk_mset(as), 
oal_mon: oal_mon(a;b), 
grp_id: e, 
pi2: snd(t), 
mset_inj: mset_inj{s}(x), 
mset_sum: a + b, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
grp_op: *, 
infix_ap: x f y, 
prop: ℙ, 
guard: {T}, 
oal_nil: 00, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
squash: ↓T, 
grp_car: |g|, 
list: T List, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
true: True, 
rev_uimplies: rev_uimplies(P;Q), 
mon_when: when b. p
Lemmas referenced : 
lookups_same_a, 
mset_for_wf, 
oal_mon_wf, 
oal_inj_wf, 
lookup_wf, 
grp_car_wf, 
grp_id_wf, 
set_car_wf, 
oal_dom_wf, 
abdmonoid_abmonoid, 
oalist_wf, 
abdmonoid_wf, 
loset_wf, 
oalist_ind_a, 
equal_wf, 
lookup_nil_lemma, 
istype-void, 
map_nil_lemma, 
mset_for_null_lemma, 
lookup_cons_pr_lemma, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
map_cons_lemma, 
mset_for_inj_lemma, 
not_wf, 
assert_wf, 
before_wf, 
map_wf, 
set_prod_wf, 
dset_of_mon_wf, 
set_eq_wf, 
uiff_transitivity, 
equal-wf-T-base, 
bool_wf, 
member_wf, 
eqtt_to_assert, 
assert_of_dset_eq, 
iff_transitivity, 
bnot_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
squash_wf, 
true_wf, 
istype-universe, 
ifthenelse_wf, 
lookup_merge, 
infix_ap_wf, 
subtype_rel_self, 
list_wf, 
sd_ordered_wf, 
mem_wf, 
dset_of_mon_wf0, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
grp_op_wf, 
lookup_oal_inj, 
iff_weakening_equal, 
mon_when_wf, 
iabmonoid_subtype_imon, 
abmonoid_subtype_iabmonoid, 
subtype_rel_transitivity, 
abmonoid_wf, 
iabmonoid_wf, 
imon_wf, 
poset_sig_wf, 
mset_for_functionality, 
ite_rw_false, 
mon_subtype_grp_sig, 
dmon_subtype_mon, 
abdmonoid_dmon, 
dmon_wf, 
mon_wf, 
grp_sig_wf, 
mset_mem_wf, 
lookup_non_zero, 
lookup_before_start, 
assert_functionality_wrt_uiff, 
dset_wf, 
mon_ident
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
applyEquality, 
sqequalRule, 
lambdaEquality_alt, 
isectElimination, 
universeIsType, 
independent_functionElimination, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
voidElimination, 
productElimination, 
equalityIsType1, 
unionElimination, 
equalityElimination, 
baseClosed, 
independent_isectElimination, 
independent_pairFormation, 
imageElimination, 
universeEquality, 
setEquality, 
productEquality, 
productIsType, 
dependent_pairFormation_alt, 
promote_hyp, 
instantiate, 
cumulativity, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps:|oal(a;b)|.    (ps  =  (msFor\{oal\_mon(a;b)\}  k'  \mmember{}  dom(ps).  inj(k',ps[k'])))
Date html generated:
2019_10_16-PM-01_07_41
Last ObjectModification:
2018_10_08-PM-00_23_31
Theory : polynom_2
Home
Index