Nuprl Lemma : lookup_cons_pr_lemma

cs,b,a,k,z,s:Top.  ([<a, b> cs][k] if (=bthen else cs[k] fi )


Proof




Definitions occuring in Statement :  lookup: as[k] cons: [a b] ifthenelse: if then else fi  top: Top infix_ap: y all: x:A. B[x] pair: <a, b> sqequal: t set_eq: =b
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T lookup: as[k] ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}cs,b,a,k,z,s:Top.    ([<a,  b>  /  cs][k]  \msim{}  if  a  (=\msubb{})  k  then  b  else  cs[k]  fi  )



Date html generated: 2016_05_16-AM-08_16_43
Last ObjectModification: 2015_12_28-PM-06_27_36

Theory : polynom_2


Home Index