Nuprl Lemma : lookup_cons_pr_lemma
∀cs,b,a,k,z,s:Top.  ([<a, b> / cs][k] ~ if a (=b) k then b else cs[k] fi )
Proof
Definitions occuring in Statement : 
lookup: as[k]
, 
cons: [a / b]
, 
ifthenelse: if b then t else f fi 
, 
top: Top
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
pair: <a, b>
, 
sqequal: s ~ t
, 
set_eq: =b
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
lookup: as[k]
, 
ycomb: Y
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
top_wf, 
list_ind_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}cs,b,a,k,z,s:Top.    ([<a,  b>  /  cs][k]  \msim{}  if  a  (=\msubb{})  k  then  b  else  cs[k]  fi  )
Date html generated:
2016_05_16-AM-08_16_43
Last ObjectModification:
2015_12_28-PM-06_27_36
Theory : polynom_2
Home
Index