Nuprl Lemma : oalist_ind_a
∀a:LOSet. ∀b:AbDMon. ∀Q:|oal(a;b)| ⟶ ℙ.
  (Q[[]]
  ⇒ (∀ws:|oal(a;b)|
        (Q[ws] ⇒ (∀x:|a|. ∀y:|b|.  ((↑before(x;map(λx.(fst(x));ws))) ⇒ (¬(y = e ∈ |b|)) ⇒ Q[[<x, y> / ws]]))))
  ⇒ {∀ws:|oal(a;b)|. Q[ws]})
Proof
Definitions occuring in Statement : 
oalist: oal(a;b), 
before: before(u;ps), 
map: map(f;as), 
cons: [a / b], 
nil: [], 
assert: ↑b, 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
pi1: fst(t), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
pair: <a, b>, 
equal: s = t ∈ T, 
abdmonoid: AbDMon, 
grp_id: e, 
grp_car: |g|, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
guard: {T}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
dset: DSet, 
so_apply: x[s], 
prop: ℙ, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
abdmonoid: AbDMon, 
dmon: DMon, 
mon: Mon, 
set_prod: s × t, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
dset_of_mon: g↓set, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
top: Top, 
oalist: oal(a;b), 
dset_set: dset_set, 
dset_list: s List, 
not: ¬A, 
false: False, 
and: P ∧ Q, 
cand: A c∧ B, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
sd_ordered: sd_ordered(as), 
ycomb: Y, 
list_ind: list_ind, 
map: map(f;as), 
nil: [], 
it: ⋅, 
btrue: tt, 
true: True, 
mem: a ∈b as, 
mon_for: For{g} x ∈ as. f[x], 
for: For{T,op,id} x ∈ as. f[x], 
reduce: reduce(f;k;as), 
grp_id: e, 
pi2: snd(t), 
bor_mon: <𝔹,∨b>, 
bfalse: ff, 
grp_car: |g|, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
sq_type: SQType(T), 
nat: ℕ, 
ge: i ≥ j , 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
list: T List
Lemmas referenced : 
set_car_wf, 
oalist_wf, 
subtype_rel_self, 
grp_car_wf, 
istype-assert, 
before_wf, 
map_wf, 
set_prod_wf, 
dset_of_mon_wf, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
istype-void, 
grp_id_wf, 
mem_wf, 
nil_wf, 
dset_of_mon_wf0, 
sd_ordered_wf, 
pi2_wf, 
abdmonoid_wf, 
loset_wf, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
istype-less_than, 
non_neg_length, 
nat_properties, 
length_wf, 
guard_wf, 
all_wf, 
le_wf, 
primrec-wf2, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-nat, 
length_wf_nat, 
oalist_cases_a, 
less_than_wf, 
cons_wf, 
length_of_cons_lemma, 
cons_in_oalist, 
list_wf, 
assert_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
because_Cache, 
instantiate, 
universeEquality, 
independent_isectElimination, 
isect_memberEquality_alt, 
voidElimination, 
equalityIstype, 
natural_numberEquality, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
productEquality, 
productIsType, 
productElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
unionElimination, 
cumulativity, 
intEquality, 
applyLambdaEquality, 
hypothesis_subsumption, 
imageElimination, 
functionEquality, 
setIsType, 
addEquality, 
voidEquality, 
independent_pairEquality, 
setEquality
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}Q:|oal(a;b)|  {}\mrightarrow{}  \mBbbP{}.
    (Q[[]]
    {}\mRightarrow{}  (\mforall{}ws:|oal(a;b)|
                (Q[ws]
                {}\mRightarrow{}  (\mforall{}x:|a|.  \mforall{}y:|b|.    ((\muparrow{}before(x;map(\mlambda{}x.(fst(x));ws)))  {}\mRightarrow{}  (\mneg{}(y  =  e))  {}\mRightarrow{}  Q[[<x,  y>  /  ws]]))))
    {}\mRightarrow{}  \{\mforall{}ws:|oal(a;b)|.  Q[ws]\})
Date html generated:
2019_10_16-PM-01_07_23
Last ObjectModification:
2018_12_08-AM-11_57_18
Theory : polynom_2
Home
Index