Nuprl Lemma : oalist_ind_a

a:LOSet. ∀b:AbDMon. ∀Q:|oal(a;b)| ⟶ ℙ.
  (Q[[]]
   (∀ws:|oal(a;b)|
        (Q[ws]  (∀x:|a|. ∀y:|b|.  ((↑before(x;map(λx.(fst(x));ws)))  (y e ∈ |b|))  Q[[<x, y> ws]]))))
   {∀ws:|oal(a;b)|. Q[ws]})


Proof




Definitions occuring in Statement :  oalist: oal(a;b) before: before(u;ps) map: map(f;as) cons: [a b] nil: [] assert: b prop: guard: {T} so_apply: x[s] pi1: fst(t) all: x:A. B[x] not: ¬A implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] pair: <a, b> equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  guard: {T} all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet so_apply: x[s] prop: loset: LOSet poset: POSet{i} qoset: QOSet abdmonoid: AbDMon dmon: DMon mon: Mon set_prod: s × t mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_of_mon: g↓set so_lambda: λ2x.t[x] uimplies: supposing a top: Top oalist: oal(a;b) dset_set: dset_set dset_list: List not: ¬A false: False and: P ∧ Q cand: c∧ B assert: b ifthenelse: if then else fi  sd_ordered: sd_ordered(as) ycomb: Y list_ind: list_ind map: map(f;as) nil: [] it: btrue: tt true: True mem: a ∈b as mon_for: For{g} x ∈ as. f[x] for: For{T,op,id} x ∈ as. f[x] reduce: reduce(f;k;as) grp_id: e pi2: snd(t) bor_mon: <𝔹,∨b> bfalse: ff grp_car: |g| int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) nat: ge: i ≥  le: A ≤ B less_than: a < b squash: T list: List
Lemmas referenced :  set_car_wf oalist_wf subtype_rel_self grp_car_wf istype-assert before_wf map_wf set_prod_wf dset_of_mon_wf pi1_wf_top subtype_rel_product top_wf istype-void grp_id_wf mem_wf nil_wf dset_of_mon_wf0 sd_ordered_wf pi2_wf abdmonoid_wf loset_wf int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf subtype_base_sq set_subtype_base lelt_wf int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le istype-less_than non_neg_length nat_properties length_wf guard_wf all_wf le_wf primrec-wf2 itermAdd_wf int_term_value_add_lemma istype-nat length_wf_nat oalist_cases_a less_than_wf cons_wf length_of_cons_lemma cons_in_oalist list_wf assert_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry functionIsType because_Cache instantiate universeEquality independent_isectElimination isect_memberEquality_alt voidElimination equalityIstype natural_numberEquality independent_pairFormation dependent_set_memberEquality_alt productEquality productIsType productElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality unionElimination cumulativity intEquality applyLambdaEquality hypothesis_subsumption imageElimination functionEquality setIsType addEquality voidEquality independent_pairEquality setEquality

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}Q:|oal(a;b)|  {}\mrightarrow{}  \mBbbP{}.
    (Q[[]]
    {}\mRightarrow{}  (\mforall{}ws:|oal(a;b)|
                (Q[ws]
                {}\mRightarrow{}  (\mforall{}x:|a|.  \mforall{}y:|b|.    ((\muparrow{}before(x;map(\mlambda{}x.(fst(x));ws)))  {}\mRightarrow{}  (\mneg{}(y  =  e))  {}\mRightarrow{}  Q[[<x,  y>  /  ws]]))))
    {}\mRightarrow{}  \{\mforall{}ws:|oal(a;b)|.  Q[ws]\})



Date html generated: 2019_10_16-PM-01_07_23
Last ObjectModification: 2018_12_08-AM-11_57_18

Theory : polynom_2


Home Index