Nuprl Lemma : lookup_oal_inj

a:LOSet. ∀b:AbDMon. ∀k,k':|a|. ∀v:|b|.  ((inj(k,v)[k']) (when (=bk'. v) ∈ |b|)


Proof




Definitions occuring in Statement :  oal_inj: inj(k,v) lookup: as[k] infix_ap: y all: x:A. B[x] equal: t ∈ T mon_when: when b. p abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_eq: =b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] oal_inj: inj(k,v) member: t ∈ T infix_ap: y uall: [x:A]. B[x] abdmonoid: AbDMon dmon: DMon mon: Mon implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  top: Top bfalse: ff iff: ⇐⇒ Q not: ¬A prop: rev_implies:  Q false: False loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet mon_when: when b. p subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  grp_eq_wf grp_id_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf equal_wf grp_car_wf eqtt_to_assert assert_of_mon_eq lookup_nil_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot lookup_cons_pr_lemma set_car_wf abdmonoid_wf loset_wf set_eq_wf assert_of_dset_eq mon_when_wf iabmonoid_subtype_imon abmonoid_subtype_iabmonoid abdmonoid_abmonoid subtype_rel_transitivity abmonoid_wf iabmonoid_wf imon_wf infix_ap_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut applyEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed independent_functionElimination productElimination independent_isectElimination sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation impliesFunctionality instantiate

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k,k':|a|.  \mforall{}v:|b|.    ((inj(k,v)[k'])  =  (when  k  (=\msubb{})  k'.  v))



Date html generated: 2017_10_01-AM-10_02_59
Last ObjectModification: 2017_03_03-PM-01_05_29

Theory : polynom_2


Home Index