Nuprl Lemma : lookup_oal_inj
∀a:LOSet. ∀b:AbDMon. ∀k,k':|a|. ∀v:|b|.  ((inj(k,v)[k']) = (when k (=b) k'. v) ∈ |b|)
Proof
Definitions occuring in Statement : 
oal_inj: inj(k,v)
, 
lookup: as[k]
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
, 
mon_when: when b. p
, 
abdmonoid: AbDMon
, 
grp_id: e
, 
grp_car: |g|
, 
loset: LOSet
, 
set_eq: =b
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
oal_inj: inj(k,v)
, 
member: t ∈ T
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
abdmonoid: AbDMon
, 
dmon: DMon
, 
mon: Mon
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
top: Top
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
dset: DSet
, 
mon_when: when b. p
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
grp_eq_wf, 
grp_id_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
equal_wf, 
grp_car_wf, 
eqtt_to_assert, 
assert_of_mon_eq, 
lookup_nil_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
lookup_cons_pr_lemma, 
set_car_wf, 
abdmonoid_wf, 
loset_wf, 
set_eq_wf, 
assert_of_dset_eq, 
mon_when_wf, 
iabmonoid_subtype_imon, 
abmonoid_subtype_iabmonoid, 
abdmonoid_abmonoid, 
subtype_rel_transitivity, 
abmonoid_wf, 
iabmonoid_wf, 
imon_wf, 
infix_ap_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
applyEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
impliesFunctionality, 
instantiate
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k,k':|a|.  \mforall{}v:|b|.    ((inj(k,v)[k'])  =  (when  k  (=\msubb{})  k'.  v))
Date html generated:
2017_10_01-AM-10_02_59
Last ObjectModification:
2017_03_03-PM-01_05_29
Theory : polynom_2
Home
Index