Nuprl Lemma : abdmonoid_abmonoid

AbDMon ⊆AbMon


Proof




Definitions occuring in Statement :  abdmonoid: AbDMon abmonoid: AbMon subtype_rel: A ⊆B
Definitions unfolded in proof :  abdmonoid: AbDMon dmon: DMon abmonoid: AbMon subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] mon: Mon prop:
Lemmas referenced :  comm_wf grp_car_wf grp_op_wf mon_wf eqfun_p_wf grp_eq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity lambdaEquality setElimination thin rename cut dependent_set_memberEquality hypothesisEquality hypothesis lemma_by_obid sqequalHypSubstitution isectElimination setEquality cumulativity

Latex:
AbDMon  \msubseteq{}r  AbMon



Date html generated: 2016_05_15-PM-00_07_43
Last ObjectModification: 2015_12_26-PM-11_46_28

Theory : groups_1


Home Index