Nuprl Lemma : abdmonoid_abmonoid
AbDMon ⊆r AbMon
Proof
Definitions occuring in Statement : 
abdmonoid: AbDMon
, 
abmonoid: AbMon
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
abdmonoid: AbDMon
, 
dmon: DMon
, 
abmonoid: AbMon
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
mon: Mon
, 
prop: ℙ
Lemmas referenced : 
comm_wf, 
grp_car_wf, 
grp_op_wf, 
mon_wf, 
eqfun_p_wf, 
grp_eq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
setElimination, 
thin, 
rename, 
cut, 
dependent_set_memberEquality, 
hypothesisEquality, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setEquality, 
cumulativity
Latex:
AbDMon  \msubseteq{}r  AbMon
Date html generated:
2016_05_15-PM-00_07_43
Last ObjectModification:
2015_12_26-PM-11_46_28
Theory : groups_1
Home
Index