Nuprl Lemma : mon_when_wf
∀[g:IMonoid]. ∀[b:𝔹]. ∀[p:|g|].  (when b. p ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_when: when b. p
, 
imon: IMonoid
, 
grp_car: |g|
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
mon_when: when b. p
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
imon: IMonoid
Lemmas referenced : 
ifthenelse_wf, 
grp_car_wf, 
grp_id_wf, 
bool_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[g:IMonoid].  \mforall{}[b:\mBbbB{}].  \mforall{}[p:|g|].    (when  b.  p  \mmember{}  |g|)
Date html generated:
2016_05_15-PM-00_18_27
Last ObjectModification:
2015_12_26-PM-11_38_25
Theory : groups_1
Home
Index