Nuprl Lemma : oal_dom_wf

a:LOSet. ∀b:AbMon. ∀ps:(|a| × |b|) List.  (dom(ps) ∈ MSet{a})


Proof




Definitions occuring in Statement :  oal_dom: dom(ps) mset: MSet{s} list: List all: x:A. B[x] member: t ∈ T product: x:A × B[x] abmonoid: AbMon grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  oal_dom: dom(ps) all: x:A. B[x] member: t ∈ T loset: LOSet poset: POSet{i} qoset: QOSet uall: [x:A]. B[x] dset: DSet abmonoid: AbMon mon: Mon pi1: fst(t)
Lemmas referenced :  mk_mset_wf map_wf set_car_wf grp_car_wf list_wf abmonoid_wf loset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis isectElimination productEquality because_Cache lambdaEquality productElimination

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbMon.  \mforall{}ps:(|a|  \mtimes{}  |b|)  List.    (dom(ps)  \mmember{}  MSet\{a\})



Date html generated: 2016_05_16-AM-08_16_30
Last ObjectModification: 2015_12_28-PM-06_27_49

Theory : polynom_2


Home Index