Nuprl Lemma : oal_inj_wf

a:LOSet. ∀b:AbDMon. ∀k:|a|. ∀v:|b|.  (inj(k,v) ∈ |oal(a;b)|)


Proof




Definitions occuring in Statement :  oal_inj: inj(k,v) oalist: oal(a;b) all: x:A. B[x] member: t ∈ T abdmonoid: AbDMon grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  oal_inj: inj(k,v) all: x:A. B[x] member: t ∈ T infix_ap: y uall: [x:A]. B[x] abdmonoid: AbDMon dmon: DMon mon: Mon implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set top: Top set_eq: =b pi2: snd(t) band: p ∧b q assert: b cand: c∧ B true: True subtype_rel: A ⊆B grp_car: |g| so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q prop: guard: {T}
Lemmas referenced :  grp_eq_wf grp_id_wf uiff_transitivity equal-wf-T-base bool_wf assert_wf equal_wf grp_car_wf eqtt_to_assert assert_of_mon_eq iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot istype-assert istype-void set_car_wf abdmonoid_wf loset_wf nil_in_oalist cons_wf nil_wf map_cons_lemma map_nil_lemma sd_ordered_cons_lemma before_nil_lemma sd_ordered_nil_lemma mem_cons_lemma mem_nil_lemma sd_ordered_wf map_wf pi1_wf_top mem_wf dset_of_mon_wf subtype_rel_self dset_of_mon_wf0 pi2_wf or_false_r bor_wf bfalse_wf false_wf assert_of_bor or_functionality_wrt_uiff2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt cut applyEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed independent_functionElimination productElimination independent_isectElimination independent_pairFormation equalityIstype functionIsType voidElimination dependent_functionElimination universeIsType dependent_set_memberEquality_alt productEquality independent_pairEquality isect_memberEquality_alt natural_numberEquality productIsType lambdaEquality_alt unionIsType unionEquality

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k:|a|.  \mforall{}v:|b|.    (inj(k,v)  \mmember{}  |oal(a;b)|)



Date html generated: 2019_10_16-PM-01_07_36
Last ObjectModification: 2019_06_24-PM-00_12_07

Theory : polynom_2


Home Index