Nuprl Lemma : oal_inj_wf
∀a:LOSet. ∀b:AbDMon. ∀k:|a|. ∀v:|b|.  (inj(k,v) ∈ |oal(a;b)|)
Proof
Definitions occuring in Statement : 
oal_inj: inj(k,v)
, 
oalist: oal(a;b)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
abdmonoid: AbDMon
, 
grp_car: |g|
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
oal_inj: inj(k,v)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
abdmonoid: AbDMon
, 
dmon: DMon
, 
mon: Mon
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
dset: DSet
, 
oalist: oal(a;b)
, 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq)
, 
set_car: |p|
, 
pi1: fst(t)
, 
dset_list: s List
, 
set_prod: s × t
, 
dset_of_mon: g↓set
, 
top: Top
, 
set_eq: =b
, 
pi2: snd(t)
, 
band: p ∧b q
, 
assert: ↑b
, 
cand: A c∧ B
, 
true: True
, 
subtype_rel: A ⊆r B
, 
grp_car: |g|
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
grp_eq_wf, 
grp_id_wf, 
uiff_transitivity, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
equal_wf, 
grp_car_wf, 
eqtt_to_assert, 
assert_of_mon_eq, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
istype-assert, 
istype-void, 
set_car_wf, 
abdmonoid_wf, 
loset_wf, 
nil_in_oalist, 
cons_wf, 
nil_wf, 
map_cons_lemma, 
map_nil_lemma, 
sd_ordered_cons_lemma, 
before_nil_lemma, 
sd_ordered_nil_lemma, 
mem_cons_lemma, 
mem_nil_lemma, 
sd_ordered_wf, 
map_wf, 
pi1_wf_top, 
mem_wf, 
dset_of_mon_wf, 
subtype_rel_self, 
dset_of_mon_wf0, 
pi2_wf, 
or_false_r, 
bor_wf, 
bfalse_wf, 
false_wf, 
assert_of_bor, 
or_functionality_wrt_uiff2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
cut, 
applyEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
inhabitedIsType, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
equalityIstype, 
functionIsType, 
voidElimination, 
dependent_functionElimination, 
universeIsType, 
dependent_set_memberEquality_alt, 
productEquality, 
independent_pairEquality, 
isect_memberEquality_alt, 
natural_numberEquality, 
productIsType, 
lambdaEquality_alt, 
unionIsType, 
unionEquality
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k:|a|.  \mforall{}v:|b|.    (inj(k,v)  \mmember{}  |oal(a;b)|)
Date html generated:
2019_10_16-PM-01_07_36
Last ObjectModification:
2019_06_24-PM-00_12_07
Theory : polynom_2
Home
Index