Nuprl Lemma : nil_in_oalist

a:LOSet. ∀b:AbDMon.  ([] ∈ |oal(a;b)|)


Proof




Definitions occuring in Statement :  oalist: oal(a;b) nil: [] all: x:A. B[x] member: t ∈ T abdmonoid: AbDMon loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set uall: [x:A]. B[x] loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet abdmonoid: AbDMon dmon: DMon mon: Mon top: Top assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff and: P ∧ Q cand: c∧ B true: True not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B pi2: snd(t)
Lemmas referenced :  abdmonoid_wf loset_wf nil_wf set_car_wf grp_car_wf map_nil_lemma istype-void sd_ordered_nil_lemma mem_nil_lemma assert_wf sd_ordered_wf map_wf not_wf mem_wf dset_of_mon_wf grp_id_wf dset_of_mon_wf0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution hypothesis universeIsType introduction extract_by_obid sqequalRule dependent_set_memberEquality_alt isectElimination thin productEquality setElimination rename hypothesisEquality dependent_functionElimination isect_memberEquality_alt voidElimination natural_numberEquality independent_pairFormation productIsType because_Cache lambdaEquality_alt productElimination applyEquality

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.    ([]  \mmember{}  |oal(a;b)|)



Date html generated: 2019_10_16-PM-01_07_07
Last ObjectModification: 2018_10_08-PM-00_17_43

Theory : polynom_2


Home Index