Nuprl Lemma : or_false_r
∀[A:ℙ]. (A ∨ False ⇐⇒ A)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
false: False
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
or: P ∨ Q, 
false: False, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
or_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
hypothesis, 
voidElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
inlFormation, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[A:\mBbbP{}].  (A  \mvee{}  False  \mLeftarrow{}{}\mRightarrow{}  A)
Date html generated:
2019_06_20-AM-11_16_21
Last ObjectModification:
2018_09_26-AM-10_24_10
Theory : core_2
Home
Index