Nuprl Lemma : or_false_r

[A:ℙ]. (A ∨ False ⇐⇒ A)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: iff: ⇐⇒ Q or: P ∨ Q false: False
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q or: P ∨ Q false: False member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  or_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  independent_pairFormation lambdaFormation sqequalHypSubstitution unionElimination thin hypothesis voidElimination cut introduction extract_by_obid isectElimination hypothesisEquality inlFormation Error :universeIsType,  universeEquality

Latex:
\mforall{}[A:\mBbbP{}].  (A  \mvee{}  False  \mLeftarrow{}{}\mRightarrow{}  A)



Date html generated: 2019_06_20-AM-11_16_21
Last ObjectModification: 2018_09_26-AM-10_24_10

Theory : core_2


Home Index