Nuprl Lemma : lookup_non_zero

a:LOSet. ∀b:AbDMon. ∀k:|a|. ∀ps:|oal(a;b)|.  ((ps[k]) e ∈ |b|) ⇐⇒ ↑(k ∈b dom(ps)))


Proof




Definitions occuring in Statement :  lookup: as[k] oal_dom: dom(ps) oalist: oal(a;b) mset_mem: mset_mem assert: b all: x:A. B[x] iff: ⇐⇒ Q not: ¬A equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] abdmonoid: AbDMon dmon: DMon mon: Mon loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet subtype_rel: A ⊆B oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set rev_implies:  Q not: ¬A false: False decidable: Dec(P) or: P ∨ Q oal_dom: dom(ps) mset_mem: mset_mem mk_mset: mk_mset(as) so_lambda: λ2x.t[x] pi2: snd(t) so_apply: x[s] top: Top assert: b ifthenelse: if then else fi  bfalse: ff set_eq: =b infix_ap: y uiff: uiff(P;Q) uimplies: supposing a bool: 𝔹 unit: Unit it: btrue: tt guard: {T}
Lemmas referenced :  not_wf equal_wf grp_car_wf lookup_wf grp_id_wf set_car_wf oalist_wf assert_wf mset_mem_wf oal_dom_wf abdmonoid_abmonoid abdmonoid_wf loset_wf decidable__assert dset_wf lookup_fails list_induction mem_wf dset_of_mon_wf map_wf dset_of_mon_wf0 list_wf map_nil_lemma lookup_nil_lemma mem_nil_lemma map_cons_lemma mem_cons_lemma false_wf lookup_cons_pr_lemma iff_transitivity bor_wf infix_ap_wf bool_wf grp_eq_wf or_wf iff_weakening_uiff assert_of_bor pi2_wf assert_of_mon_eq set_eq_wf pi1_wf assert_of_dset_eq cons_wf uiff_transitivity equal-wf-T-base eqtt_to_assert bnot_wf eqff_to_assert assert_of_bnot ifthenelse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis dependent_functionElimination hypothesisEquality applyEquality lambdaEquality sqequalRule independent_functionElimination voidElimination unionElimination productElimination productEquality functionEquality isect_memberEquality voidEquality addLevel impliesFunctionality independent_pairEquality orFunctionality independent_isectElimination equalityTransitivity equalitySymmetry impliesLevelFunctionality equalityElimination baseClosed inlFormation inrFormation

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k:|a|.  \mforall{}ps:|oal(a;b)|.    (\mneg{}((ps[k])  =  e)  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}(k  \mmember{}\msubb{}  dom(ps)))



Date html generated: 2017_10_01-AM-10_02_09
Last ObjectModification: 2017_03_03-PM-01_05_07

Theory : polynom_2


Home Index