Nuprl Lemma : lookup_non_zero
∀a:LOSet. ∀b:AbDMon. ∀k:|a|. ∀ps:|oal(a;b)|.  (¬((ps[k]) = e ∈ |b|) 
⇐⇒ ↑(k ∈b dom(ps)))
Proof
Definitions occuring in Statement : 
lookup: as[k]
, 
oal_dom: dom(ps)
, 
oalist: oal(a;b)
, 
mset_mem: mset_mem, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
equal: s = t ∈ T
, 
abdmonoid: AbDMon
, 
grp_id: e
, 
grp_car: |g|
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
abdmonoid: AbDMon
, 
dmon: DMon
, 
mon: Mon
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
dset: DSet
, 
subtype_rel: A ⊆r B
, 
oalist: oal(a;b)
, 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq)
, 
set_car: |p|
, 
pi1: fst(t)
, 
dset_list: s List
, 
set_prod: s × t
, 
dset_of_mon: g↓set
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
false: False
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
oal_dom: dom(ps)
, 
mset_mem: mset_mem, 
mk_mset: mk_mset(as)
, 
so_lambda: λ2x.t[x]
, 
pi2: snd(t)
, 
so_apply: x[s]
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
set_eq: =b
, 
infix_ap: x f y
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
guard: {T}
Lemmas referenced : 
not_wf, 
equal_wf, 
grp_car_wf, 
lookup_wf, 
grp_id_wf, 
set_car_wf, 
oalist_wf, 
assert_wf, 
mset_mem_wf, 
oal_dom_wf, 
abdmonoid_abmonoid, 
abdmonoid_wf, 
loset_wf, 
decidable__assert, 
dset_wf, 
lookup_fails, 
list_induction, 
mem_wf, 
dset_of_mon_wf, 
map_wf, 
dset_of_mon_wf0, 
list_wf, 
map_nil_lemma, 
lookup_nil_lemma, 
mem_nil_lemma, 
map_cons_lemma, 
mem_cons_lemma, 
false_wf, 
lookup_cons_pr_lemma, 
iff_transitivity, 
bor_wf, 
infix_ap_wf, 
bool_wf, 
grp_eq_wf, 
or_wf, 
iff_weakening_uiff, 
assert_of_bor, 
pi2_wf, 
assert_of_mon_eq, 
set_eq_wf, 
pi1_wf, 
assert_of_dset_eq, 
cons_wf, 
uiff_transitivity, 
equal-wf-T-base, 
eqtt_to_assert, 
bnot_wf, 
eqff_to_assert, 
assert_of_bnot, 
ifthenelse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
independent_functionElimination, 
voidElimination, 
unionElimination, 
productElimination, 
productEquality, 
functionEquality, 
isect_memberEquality, 
voidEquality, 
addLevel, 
impliesFunctionality, 
independent_pairEquality, 
orFunctionality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
impliesLevelFunctionality, 
equalityElimination, 
baseClosed, 
inlFormation, 
inrFormation
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k:|a|.  \mforall{}ps:|oal(a;b)|.    (\mneg{}((ps[k])  =  e)  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}(k  \mmember{}\msubb{}  dom(ps)))
Date html generated:
2017_10_01-AM-10_02_09
Last ObjectModification:
2017_03_03-PM-01_05_07
Theory : polynom_2
Home
Index