Nuprl Lemma : lookup_non_zero
∀a:LOSet. ∀b:AbDMon. ∀k:|a|. ∀ps:|oal(a;b)|.  (¬((ps[k]) = e ∈ |b|) ⇐⇒ ↑(k ∈b dom(ps)))
Proof
Definitions occuring in Statement : 
lookup: as[k], 
oal_dom: dom(ps), 
oalist: oal(a;b), 
mset_mem: mset_mem, 
assert: ↑b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
equal: s = t ∈ T, 
abdmonoid: AbDMon, 
grp_id: e, 
grp_car: |g|, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
abdmonoid: AbDMon, 
dmon: DMon, 
mon: Mon, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
dset: DSet, 
subtype_rel: A ⊆r B, 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
dset_list: s List, 
set_prod: s × t, 
dset_of_mon: g↓set, 
rev_implies: P ⇐ Q, 
not: ¬A, 
false: False, 
decidable: Dec(P), 
or: P ∨ Q, 
oal_dom: dom(ps), 
mset_mem: mset_mem, 
mk_mset: mk_mset(as), 
so_lambda: λ2x.t[x], 
pi2: snd(t), 
so_apply: x[s], 
top: Top, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
set_eq: =b, 
infix_ap: x f y, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
guard: {T}
Lemmas referenced : 
not_wf, 
equal_wf, 
grp_car_wf, 
lookup_wf, 
grp_id_wf, 
set_car_wf, 
oalist_wf, 
assert_wf, 
mset_mem_wf, 
oal_dom_wf, 
abdmonoid_abmonoid, 
abdmonoid_wf, 
loset_wf, 
decidable__assert, 
dset_wf, 
lookup_fails, 
list_induction, 
mem_wf, 
dset_of_mon_wf, 
map_wf, 
dset_of_mon_wf0, 
list_wf, 
map_nil_lemma, 
lookup_nil_lemma, 
mem_nil_lemma, 
map_cons_lemma, 
mem_cons_lemma, 
false_wf, 
lookup_cons_pr_lemma, 
iff_transitivity, 
bor_wf, 
infix_ap_wf, 
bool_wf, 
grp_eq_wf, 
or_wf, 
iff_weakening_uiff, 
assert_of_bor, 
pi2_wf, 
assert_of_mon_eq, 
set_eq_wf, 
pi1_wf, 
assert_of_dset_eq, 
cons_wf, 
uiff_transitivity, 
equal-wf-T-base, 
eqtt_to_assert, 
bnot_wf, 
eqff_to_assert, 
assert_of_bnot, 
ifthenelse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
independent_functionElimination, 
voidElimination, 
unionElimination, 
productElimination, 
productEquality, 
functionEquality, 
isect_memberEquality, 
voidEquality, 
addLevel, 
impliesFunctionality, 
independent_pairEquality, 
orFunctionality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
impliesLevelFunctionality, 
equalityElimination, 
baseClosed, 
inlFormation, 
inrFormation
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k:|a|.  \mforall{}ps:|oal(a;b)|.    (\mneg{}((ps[k])  =  e)  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}(k  \mmember{}\msubb{}  dom(ps)))
Date html generated:
2017_10_01-AM-10_02_09
Last ObjectModification:
2017_03_03-PM-01_05_07
Theory : polynom_2
Home
Index