Nuprl Lemma : lookup_fails
∀a:DSet. ∀B:Type. ∀z:B. ∀k:|a|. ∀ps:(|a| × B) List.  ((¬↑(k ∈b map(λx.(fst(x));ps))) 
⇒ ((ps[k]) = z ∈ B))
Proof
Definitions occuring in Statement : 
lookup: as[k]
, 
mem: a ∈b as
, 
map: map(f;as)
, 
list: T List
, 
assert: ↑b
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
infix_ap: x f y
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
false: False
, 
pi1: fst(t)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
Lemmas referenced : 
list_induction, 
set_car_wf, 
not_wf, 
assert_wf, 
mem_wf, 
map_wf, 
pi1_wf, 
equal_wf, 
lookup_wf, 
list_wf, 
map_nil_lemma, 
lookup_nil_lemma, 
mem_nil_lemma, 
false_wf, 
map_cons_lemma, 
mem_cons_lemma, 
bor_wf, 
set_eq_wf, 
dset_wf, 
iff_transitivity, 
or_wf, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_dset_eq, 
not_over_or, 
lookup_cons_pr_lemma, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
eqtt_to_assert, 
bnot_wf, 
eqff_to_assert, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
productEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
universeEquality, 
addLevel, 
impliesFunctionality, 
independent_pairFormation, 
orFunctionality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
levelHypothesis, 
promote_hyp, 
impliesLevelFunctionality, 
unionElimination, 
equalityElimination, 
baseClosed
Latex:
\mforall{}a:DSet.  \mforall{}B:Type.  \mforall{}z:B.  \mforall{}k:|a|.  \mforall{}ps:(|a|  \mtimes{}  B)  List.
    ((\mneg{}\muparrow{}(k  \mmember{}\msubb{}  map(\mlambda{}x.(fst(x));ps)))  {}\mRightarrow{}  ((ps[k])  =  z))
Date html generated:
2017_10_01-AM-10_02_05
Last ObjectModification:
2017_03_03-PM-01_04_24
Theory : polynom_2
Home
Index