Nuprl Lemma : lookup_fails

a:DSet. ∀B:Type. ∀z:B. ∀k:|a|. ∀ps:(|a| × B) List.  ((¬↑(k ∈b map(λx.(fst(x));ps)))  ((ps[k]) z ∈ B))


Proof




Definitions occuring in Statement :  lookup: as[k] mem: a ∈b as map: map(f;as) list: List assert: b pi1: fst(t) all: x:A. B[x] not: ¬A implies:  Q lambda: λx.A[x] product: x:A × B[x] universe: Type equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T dset: DSet so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] top: Top assert: b ifthenelse: if then else fi  bfalse: ff infix_ap: y not: ¬A iff: ⇐⇒ Q and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a rev_implies:  Q or: P ∨ Q false: False pi1: fst(t) bool: 𝔹 unit: Unit it: btrue: tt
Lemmas referenced :  list_induction set_car_wf not_wf assert_wf mem_wf map_wf pi1_wf equal_wf lookup_wf list_wf map_nil_lemma lookup_nil_lemma mem_nil_lemma false_wf map_cons_lemma mem_cons_lemma bor_wf set_eq_wf dset_wf iff_transitivity or_wf iff_weakening_uiff assert_of_bor assert_of_dset_eq not_over_or lookup_cons_pr_lemma bool_wf uiff_transitivity equal-wf-T-base eqtt_to_assert bnot_wf eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination productEquality setElimination rename because_Cache hypothesis cumulativity hypothesisEquality sqequalRule lambdaEquality functionEquality dependent_functionElimination productElimination independent_pairEquality independent_functionElimination isect_memberEquality voidElimination voidEquality applyEquality universeEquality addLevel impliesFunctionality independent_pairFormation orFunctionality independent_isectElimination equalityTransitivity equalitySymmetry levelHypothesis promote_hyp impliesLevelFunctionality unionElimination equalityElimination baseClosed

Latex:
\mforall{}a:DSet.  \mforall{}B:Type.  \mforall{}z:B.  \mforall{}k:|a|.  \mforall{}ps:(|a|  \mtimes{}  B)  List.
    ((\mneg{}\muparrow{}(k  \mmember{}\msubb{}  map(\mlambda{}x.(fst(x));ps)))  {}\mRightarrow{}  ((ps[k])  =  z))



Date html generated: 2017_10_01-AM-10_02_05
Last ObjectModification: 2017_03_03-PM-01_04_24

Theory : polynom_2


Home Index