Nuprl Lemma : not_over_or

[A,B:ℙ].  uiff(¬(A ∨ B);(¬A) ∧ B))


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] prop: not: ¬A or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False or: P ∨ Q prop: guard: {T}
Lemmas referenced :  not_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation lambdaFormation thin sqequalHypSubstitution hypothesis independent_functionElimination inlFormation hypothesisEquality voidElimination sqequalRule inrFormation productElimination independent_pairEquality lambdaEquality dependent_functionElimination because_Cache Error :universeIsType,  extract_by_obid isectElimination unionElimination Error :productIsType,  isect_memberEquality equalityTransitivity equalitySymmetry productEquality Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[A,B:\mBbbP{}].    uiff(\mneg{}(A  \mvee{}  B);(\mneg{}A)  \mwedge{}  (\mneg{}B))



Date html generated: 2019_06_20-AM-11_16_04
Last ObjectModification: 2018_09_26-AM-10_23_58

Theory : core_2


Home Index