Nuprl Lemma : not_over_or
∀[A,B:ℙ].  uiff(¬(A ∨ B);(¬A) ∧ (¬B))
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
not: ¬A, 
or: P ∨ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
or: P ∨ Q, 
prop: ℙ, 
guard: {T}
Lemmas referenced : 
not_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
independent_functionElimination, 
inlFormation, 
hypothesisEquality, 
voidElimination, 
sqequalRule, 
inrFormation, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
unionElimination, 
Error :productIsType, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[A,B:\mBbbP{}].    uiff(\mneg{}(A  \mvee{}  B);(\mneg{}A)  \mwedge{}  (\mneg{}B))
 Date html generated: 
2019_06_20-AM-11_16_04
 Last ObjectModification: 
2018_09_26-AM-10_23_58
Theory : core_2
Home
Index