Nuprl Lemma : mset_for_inj_lemma

f,a,y,g,s:Top.  (msFor{g} x ∈ mset_inj{s}(y) a. f[x] f[y] (msFor{g} x ∈ a. f[x]))


Proof




Definitions occuring in Statement :  mset_for: mset_for mset_sum: b mset_inj: mset_inj{s}(x) top: Top infix_ap: y so_apply: x[s] all: x:A. B[x] sqequal: t grp_op: *
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T mset_for: mset_for mset_inj: mset_inj{s}(x) mset_sum: b mk_mset: mk_mset(as) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  istype-top list_ind_cons_lemma istype-void list_ind_nil_lemma mon_for_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis inhabitedIsType hypothesisEquality introduction extract_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination

Latex:
\mforall{}f,a,y,g,s:Top.    (msFor\{g\}  x  \mmember{}  mset\_inj\{s\}(y)  +  a.  f[x]  \msim{}  f[y]  *  (msFor\{g\}  x  \mmember{}  a.  f[x]))



Date html generated: 2019_10_16-PM-01_06_35
Last ObjectModification: 2018_10_08-PM-00_46_01

Theory : mset


Home Index