Nuprl Lemma : mset_for_inj_lemma
∀f,a,y,g,s:Top.  (msFor{g} x ∈ mset_inj{s}(y) + a. f[x] ~ f[y] * (msFor{g} x ∈ a. f[x]))
Proof
Definitions occuring in Statement : 
mset_for: mset_for, 
mset_sum: a + b
, 
mset_inj: mset_inj{s}(x)
, 
top: Top
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
, 
grp_op: *
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
mset_for: mset_for, 
mset_inj: mset_inj{s}(x)
, 
mset_sum: a + b
, 
mk_mset: mk_mset(as)
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
istype-top, 
list_ind_cons_lemma, 
istype-void, 
list_ind_nil_lemma, 
mon_for_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
inhabitedIsType, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}f,a,y,g,s:Top.    (msFor\{g\}  x  \mmember{}  mset\_inj\{s\}(y)  +  a.  f[x]  \msim{}  f[y]  *  (msFor\{g\}  x  \mmember{}  a.  f[x]))
Date html generated:
2019_10_16-PM-01_06_35
Last ObjectModification:
2018_10_08-PM-00_46_01
Theory : mset
Home
Index