Nuprl Lemma : oal_mon_wf
∀a:LOSet. ∀b:AbDMon.  (oal_mon(a;b) ∈ AbDMon)
Proof
Definitions occuring in Statement : 
oal_mon: oal_mon(a;b)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
abdmonoid: AbDMon
, 
loset: LOSet
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
oal_mon: oal_mon(a;b)
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
dset: DSet
, 
uimplies: b supposing a
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
ident: Ident(T;op;id)
, 
and: P ∧ Q
, 
comm: Comm(T;op)
Lemmas referenced : 
mk_abdmonoid, 
set_car_wf, 
oalist_wf, 
dset_wf, 
set_eq_wf, 
btrue_wf, 
oal_merge_wf2, 
oal_nil_wf, 
abdmonoid_wf, 
loset_wf, 
dset_properties, 
oal_merge_assoc, 
oal_nil_ident_r, 
oal_nil_ident_l, 
oal_merge_comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberFormation, 
introduction, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation, 
productElimination, 
independent_pairEquality
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.    (oal\_mon(a;b)  \mmember{}  AbDMon)
Date html generated:
2016_05_16-AM-08_18_34
Last ObjectModification:
2015_12_28-PM-06_26_44
Theory : polynom_2
Home
Index