Nuprl Lemma : oal_merge_assoc

a:LOSet. ∀b:AbDMon. ∀ps,qs,rs:|oal(a;b)|.  ((ps ++ qs ++ rs) ((ps ++ qs) ++ rs) ∈ |oal(a;b)|)


Proof




Definitions occuring in Statement :  oal_merge: ps ++ qs oalist: oal(a;b) all: x:A. B[x] equal: t ∈ T abdmonoid: AbDMon loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q squash: T uall: [x:A]. B[x] prop: abdmonoid: AbDMon dmon: DMon mon: Mon infix_ap: y loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet subtype_rel: A ⊆B oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  lookups_same_a oal_merge_wf2 equal_wf squash_wf true_wf grp_car_wf lookup_merge grp_op_wf lookup_wf grp_id_wf set_car_wf oalist_wf dset_wf iff_weakening_equal infix_ap_wf dset_of_mon_wf0 mon_assoc iabmonoid_subtype_imon abmonoid_subtype_iabmonoid abdmonoid_abmonoid subtype_rel_transitivity abdmonoid_wf abmonoid_wf iabmonoid_wf imon_wf loset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis independent_functionElimination applyEquality lambdaEquality imageElimination isectElimination equalityTransitivity equalitySymmetry universeEquality setElimination rename because_Cache sqequalRule natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination functionEquality instantiate

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps,qs,rs:|oal(a;b)|.    ((ps  ++  qs  ++  rs)  =  ((ps  ++  qs)  ++  rs))



Date html generated: 2017_10_01-AM-10_02_54
Last ObjectModification: 2017_03_03-PM-01_05_30

Theory : polynom_2


Home Index