Nuprl Lemma : lookups_same_a

a:LOSet. ∀b:AbDMon. ∀ps,qs:|oal(a;b)|.  ((∀u:|a|. ((ps[u]) (qs[u]) ∈ |b|))  (ps qs ∈ |oal(a;b)|))


Proof




Definitions occuring in Statement :  lookup: as[k] oalist: oal(a;b) all: x:A. B[x] implies:  Q equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set member: t ∈ T prop: uall: [x:A]. B[x] loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet so_lambda: λ2x.t[x] abdmonoid: AbDMon dmon: DMon mon: Mon subtype_rel: A ⊆B so_apply: x[s] and: P ∧ Q cand: c∧ B pi2: snd(t)
Lemmas referenced :  all_wf set_car_wf equal_wf grp_car_wf lookup_wf grp_id_wf oalist_wf dset_wf abdmonoid_wf loset_wf lookups_same assert_wf sd_ordered_wf map_wf not_wf mem_wf dset_of_mon_wf dset_of_mon_wf0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality lambdaEquality dependent_functionElimination because_Cache applyEquality dependent_set_memberEquality productElimination independent_pairFormation productEquality independent_functionElimination

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps,qs:|oal(a;b)|.    ((\mforall{}u:|a|.  ((ps[u])  =  (qs[u])))  {}\mRightarrow{}  (ps  =  qs))



Date html generated: 2016_05_16-AM-08_17_19
Last ObjectModification: 2015_12_28-PM-06_27_26

Theory : polynom_2


Home Index