Nuprl Lemma : lookups_same
∀a:LOSet. ∀b:AbDMon. ∀ps,qs:|oal(a;b)|. ((∀u:|a|. ((ps[u]) = (qs[u]) ∈ |b|))
⇒ (ps = qs ∈ ((|a| × |b|) List)))
Proof
Definitions occuring in Statement :
lookup: as[k]
,
oalist: oal(a;b)
,
list: T List
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
product: x:A × B[x]
,
equal: s = t ∈ T
,
abdmonoid: AbDMon
,
grp_id: e
,
grp_car: |g|
,
loset: LOSet
,
set_car: |p|
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
implies: P
⇒ Q
,
prop: ℙ
,
loset: LOSet
,
poset: POSet{i}
,
qoset: QOSet
,
dset: DSet
,
abdmonoid: AbDMon
,
dmon: DMon
,
mon: Mon
,
oalist: oal(a;b)
,
dset_set: dset_set,
mk_dset: mk_dset(T, eq)
,
set_car: |p|
,
pi1: fst(t)
,
dset_list: s List
,
set_prod: s × t
,
dset_of_mon: g↓set
,
so_apply: x[s]
,
guard: {T}
,
top: Top
,
infix_ap: x f y
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
false: False
,
or: P ∨ Q
,
squash: ↓T
,
true: True
,
decidable: Dec(P)
Lemmas referenced :
oalist_ind,
all_wf,
set_car_wf,
oalist_wf,
equal_wf,
grp_car_wf,
lookup_wf,
grp_id_wf,
list_wf,
nil_wf,
cons_wf,
not_wf,
assert_wf,
before_wf,
map_wf,
set_prod_wf,
dset_of_mon_wf,
abdmonoid_wf,
loset_wf,
oalist_cases,
equal-wf-base-T,
dset_wf,
lookup_nil_lemma,
lookup_cons_pr_lemma,
set_eq_wf,
bool_wf,
uiff_transitivity,
equal-wf-T-base,
eqtt_to_assert,
assert_of_dset_eq,
iff_transitivity,
bnot_wf,
iff_weakening_uiff,
eqff_to_assert,
assert_of_bnot,
loset_trichot,
squash_wf,
true_wf,
set_lt_transitivity_2,
set_leq_weakening_eq,
set_lt_irreflexivity,
iff_weakening_equal,
lookup_before_start,
before_trans,
decidable__dset_eq,
poset_sig_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
sqequalRule,
lambdaEquality,
isectElimination,
hypothesis,
applyEquality,
because_Cache,
functionEquality,
setElimination,
rename,
productEquality,
independent_functionElimination,
independent_pairEquality,
productElimination,
baseClosed,
isect_memberEquality,
voidElimination,
voidEquality,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
independent_pairFormation,
impliesFunctionality,
imageElimination,
universeEquality,
natural_numberEquality,
imageMemberEquality,
cumulativity
Latex:
\mforall{}a:LOSet. \mforall{}b:AbDMon. \mforall{}ps,qs:|oal(a;b)|. ((\mforall{}u:|a|. ((ps[u]) = (qs[u]))) {}\mRightarrow{} (ps = qs))
Date html generated:
2017_10_01-AM-10_02_23
Last ObjectModification:
2017_03_03-PM-01_05_24
Theory : polynom_2
Home
Index