Nuprl Lemma : lookups_same

a:LOSet. ∀b:AbDMon. ∀ps,qs:|oal(a;b)|.  ((∀u:|a|. ((ps[u]) (qs[u]) ∈ |b|))  (ps qs ∈ ((|a| × |b|) List)))


Proof




Definitions occuring in Statement :  lookup: as[k] oalist: oal(a;b) list: List all: x:A. B[x] implies:  Q product: x:A × B[x] equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] subtype_rel: A ⊆B implies:  Q prop: loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet abdmonoid: AbDMon dmon: DMon mon: Mon oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set so_apply: x[s] guard: {T} top: Top infix_ap: y bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False or: P ∨ Q squash: T true: True decidable: Dec(P)
Lemmas referenced :  oalist_ind all_wf set_car_wf oalist_wf equal_wf grp_car_wf lookup_wf grp_id_wf list_wf nil_wf cons_wf not_wf assert_wf before_wf map_wf set_prod_wf dset_of_mon_wf abdmonoid_wf loset_wf oalist_cases equal-wf-base-T dset_wf lookup_nil_lemma lookup_cons_pr_lemma set_eq_wf bool_wf uiff_transitivity equal-wf-T-base eqtt_to_assert assert_of_dset_eq iff_transitivity bnot_wf iff_weakening_uiff eqff_to_assert assert_of_bnot loset_trichot squash_wf true_wf set_lt_transitivity_2 set_leq_weakening_eq set_lt_irreflexivity iff_weakening_equal lookup_before_start before_trans decidable__dset_eq poset_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality isectElimination hypothesis applyEquality because_Cache functionEquality setElimination rename productEquality independent_functionElimination independent_pairEquality productElimination baseClosed isect_memberEquality voidElimination voidEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination independent_pairFormation impliesFunctionality imageElimination universeEquality natural_numberEquality imageMemberEquality cumulativity

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps,qs:|oal(a;b)|.    ((\mforall{}u:|a|.  ((ps[u])  =  (qs[u])))  {}\mRightarrow{}  (ps  =  qs))



Date html generated: 2017_10_01-AM-10_02_23
Last ObjectModification: 2017_03_03-PM-01_05_24

Theory : polynom_2


Home Index