Nuprl Lemma : oalist_cases

a:LOSet. ∀b:AbDMon. ∀Q:((|a| × |b|) List) ⟶ ℙ.
  (Q[[]]
   (∀ws:|oal(a;b)|. ∀x:|a|. ∀y:|b|.  ((↑before(x;map(λx.(fst(x));ws)))  (y e ∈ |b|))  Q[[<x, y> ws]]))
   {∀ws:|oal(a;b)|. Q[ws]})


Proof




Definitions occuring in Statement :  oalist: oal(a;b) before: before(u;ps) map: map(f;as) cons: [a b] nil: [] list: List assert: b prop: guard: {T} so_apply: x[s] pi1: fst(t) all: x:A. B[x] not: ¬A implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  guard: {T} all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet loset: LOSet poset: POSet{i} qoset: QOSet abdmonoid: AbDMon dmon: DMon mon: Mon set_prod: s × t mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) oalist: oal(a;b) dset_set: dset_set dset_list: List dset_of_mon: g↓set prop: so_apply: x[s] and: P ∧ Q pi2: snd(t) sq_stable: SqStable(P) not: ¬A false: False squash: T or: P ∨ Q top: Top assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff cons: [a b] set_eq: =b bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) uimplies: supposing a band: p ∧b q exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb grp_car: |g| infix_ap: y rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B true: True
Lemmas referenced :  set_car_wf oalist_wf grp_car_wf assert_wf before_wf map_wf set_prod_wf dset_of_mon_wf not_wf equal_wf grp_id_wf cons_wf subtype_rel_self nil_wf list_wf abdmonoid_wf loset_wf sq_stable__and sd_ordered_wf mem_wf dset_of_mon_wf0 sq_stable__assert sq_stable__not list-cases map_nil_lemma istype-void sd_ordered_nil_lemma mem_nil_lemma true_wf false_wf product_subtype_list map_cons_lemma sd_ordered_cons_lemma mem_cons_lemma eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bfalse_wf bor_wf infix_ap_wf bool_wf grp_eq_wf iff_transitivity or_wf iff_weakening_uiff assert_of_bor assert_of_mon_eq assert_of_band squash_wf dset_wf assert_elim
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry functionIsType because_Cache productElimination productEquality independent_pairEquality instantiate universeEquality isect_memberEquality_alt independent_functionElimination voidElimination functionIsTypeImplies imageMemberEquality baseClosed imageElimination unionElimination productIsType promote_hyp hypothesis_subsumption equalityElimination independent_isectElimination dependent_pairFormation_alt equalityIsType1 functionEquality independent_pairFormation inlFormation_alt inrFormation_alt unionIsType dependent_set_memberEquality_alt natural_numberEquality cumulativity

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}Q:((|a|  \mtimes{}  |b|)  List)  {}\mrightarrow{}  \mBbbP{}.
    (Q[[]]
    {}\mRightarrow{}  (\mforall{}ws:|oal(a;b)|.  \mforall{}x:|a|.  \mforall{}y:|b|.
                ((\muparrow{}before(x;map(\mlambda{}x.(fst(x));ws)))  {}\mRightarrow{}  (\mneg{}(y  =  e))  {}\mRightarrow{}  Q[[<x,  y>  /  ws]]))
    {}\mRightarrow{}  \{\mforall{}ws:|oal(a;b)|.  Q[ws]\})



Date html generated: 2019_10_16-PM-01_07_15
Last ObjectModification: 2018_10_08-PM-00_30_43

Theory : polynom_2


Home Index