Nuprl Lemma : assert_elim

[b:𝔹]. tt supposing ↑b


Proof




Definitions occuring in Statement :  assert: b btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bool: 𝔹 unit: Unit it: btrue: tt assert: b ifthenelse: if then else fi  implies:  Q prop: bfalse: ff false: False
Lemmas referenced :  btrue_wf true_wf false_wf assert_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin sqequalHypSubstitution unionElimination equalityElimination sqequalRule lambdaFormation extract_by_obid hypothesis voidElimination independent_functionElimination Error :universeIsType,  isectElimination hypothesisEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[b:\mBbbB{}].  b  =  tt  supposing  \muparrow{}b



Date html generated: 2019_06_20-AM-11_20_05
Last ObjectModification: 2018_09_26-AM-10_50_28

Theory : union


Home Index