Nuprl Lemma : set_lt_transitivity_2
∀[s:QOSet]. ∀[a,b,c:|s|].  (a <s c) supposing ((b ≤ c) and (a <s b))
Proof
Definitions occuring in Statement : 
qoset: QOSet
, 
set_lt: a <p b
, 
set_leq: a ≤ b
, 
set_car: |p|
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
qoset: QOSet
, 
dset: DSet
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
set_lt: a <p b
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
set_leq: a ≤ b
, 
infix_ap: x f y
, 
guard: {T}
Lemmas referenced : 
set_lt_is_sp_of_leq, 
assert_witness, 
set_blt_wf, 
set_leq_wf, 
set_lt_wf, 
set_car_wf, 
qoset_wf, 
utrans_imp_sp_utrans_b, 
set_le_wf, 
set_leq_trans
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
applyEquality
Latex:
\mforall{}[s:QOSet].  \mforall{}[a,b,c:|s|].    (a  <s  c)  supposing  ((b  \mleq{}  c)  and  (a  <s  b))
Date html generated:
2016_05_15-PM-00_04_56
Last ObjectModification:
2015_12_26-PM-11_28_05
Theory : sets_1
Home
Index