Nuprl Lemma : qoset_wf
QOSet ∈ 𝕌'
Proof
Definitions occuring in Statement : 
qoset: QOSet
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
qoset: QOSet
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
Lemmas referenced : 
dset_wf, 
upreorder_wf, 
set_car_wf, 
set_leq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
setEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
cumulativity, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality
Latex:
QOSet  \mmember{}  \mBbbU{}'
Date html generated:
2016_05_15-PM-00_04_29
Last ObjectModification:
2015_12_26-PM-11_28_32
Theory : sets_1
Home
Index