Nuprl Lemma : set_leq_trans
∀[s:QOSet]. UniformlyTrans(|s|;x,y.x ≤ y)
Proof
Definitions occuring in Statement : 
qoset: QOSet
, 
set_leq: a ≤ b
, 
set_car: |p|
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
qoset: QOSet
, 
dset: DSet
, 
set_leq: a ≤ b
, 
infix_ap: x f y
, 
uimplies: b supposing a
Lemmas referenced : 
set_leq_wf, 
assert_witness, 
set_le_wf, 
set_car_wf, 
qoset_wf, 
qoset_trans
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}[s:QOSet].  UniformlyTrans(|s|;x,y.x  \mleq{}  y)
Date html generated:
2016_05_15-PM-00_04_42
Last ObjectModification:
2015_12_26-PM-11_28_06
Theory : sets_1
Home
Index