Nuprl Lemma : set_leq_trans

[s:QOSet]. UniformlyTrans(|s|;x,y.x ≤ y)


Proof




Definitions occuring in Statement :  qoset: QOSet set_leq: a ≤ b set_car: |p| utrans: UniformlyTrans(T;x,y.E[x; y]) uall: [x:A]. B[x]
Definitions unfolded in proof :  utrans: UniformlyTrans(T;x,y.E[x; y]) uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: qoset: QOSet dset: DSet set_leq: a ≤ b infix_ap: y uimplies: supposing a
Lemmas referenced :  set_leq_wf assert_witness set_le_wf set_car_wf qoset_wf qoset_trans
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis lambdaEquality dependent_functionElimination applyEquality independent_functionElimination isect_memberEquality because_Cache independent_isectElimination

Latex:
\mforall{}[s:QOSet].  UniformlyTrans(|s|;x,y.x  \mleq{}  y)



Date html generated: 2016_05_15-PM-00_04_42
Last ObjectModification: 2015_12_26-PM-11_28_06

Theory : sets_1


Home Index