Nuprl Lemma : set_lt_irreflexivity
∀[s:QOSet]. ∀[a:|s|].  False supposing a <s a
Proof
Definitions occuring in Statement : 
qoset: QOSet
, 
set_lt: a <p b
, 
set_car: |p|
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
false: False
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
qoset: QOSet
, 
dset: DSet
Lemmas referenced : 
qoset_lt_irrefl, 
set_lt_wf, 
set_car_wf, 
qoset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
setElimination, 
rename, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[s:QOSet].  \mforall{}[a:|s|].    False  supposing  a  <s  a
Date html generated:
2016_05_15-PM-00_04_49
Last ObjectModification:
2015_12_26-PM-11_28_02
Theory : sets_1
Home
Index