Nuprl Lemma : qoset_lt_irrefl

[s:QOSet]. ∀[a,b:|s|].  ¬(a b ∈ |s|) supposing a <b


Proof




Definitions occuring in Statement :  qoset: QOSet set_lt: a <b set_car: |p| uimplies: supposing a uall: [x:A]. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False prop: qoset: QOSet dset: DSet uiff: uiff(P;Q) and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  equal_wf set_car_wf set_lt_wf qoset_wf set_lt_is_sp_of_leq strict_part_irrefl set_leq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination setElimination rename hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache isect_memberEquality equalityTransitivity equalitySymmetry productElimination independent_isectElimination

Latex:
\mforall{}[s:QOSet].  \mforall{}[a,b:|s|].    \mneg{}(a  =  b)  supposing  a  <s  b



Date html generated: 2017_10_01-AM-08_13_13
Last ObjectModification: 2017_02_28-PM-01_57_16

Theory : sets_1


Home Index