Nuprl Lemma : strict_part_irrefl

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[a,b:T].  ¬(a b ∈ T) supposing strict_part(x,y.R[x;y];a;b)


Proof




Definitions occuring in Statement :  strict_part: strict_part(x,y.R[x; y];a;b) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] not: ¬A function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  not: ¬A strict_part: strict_part(x,y.R[x; y];a;b) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q false: False and: P ∧ Q prop: so_apply: x[s1;s2] subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  equal_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution productElimination thin hypothesis extract_by_obid isectElimination cumulativity hypothesisEquality lambdaEquality dependent_functionElimination because_Cache productEquality applyEquality functionExtensionality universeEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality voidElimination hyp_replacement independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[a,b:T].    \mneg{}(a  =  b)  supposing  strict\_part(x,y.R[x;y];a;b)



Date html generated: 2017_04_14-AM-07_37_51
Last ObjectModification: 2017_02_27-PM-03_09_48

Theory : rel_1


Home Index