Nuprl Lemma : decidable__dset_eq

s:DSet. ∀a,b:|s|.  Dec(a b ∈ |s|)


Proof




Definitions occuring in Statement :  dset: DSet set_car: |p| decidable: Dec(P) all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T dset: DSet infix_ap: y implies:  Q uiff: uiff(P;Q) and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  decidable_functionality equal_wf set_car_wf assert_wf set_eq_wf iff_weakening_uiff assert_of_dset_eq decidable__assert dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis applyEquality independent_functionElimination because_Cache productElimination independent_pairFormation dependent_functionElimination

Latex:
\mforall{}s:DSet.  \mforall{}a,b:|s|.    Dec(a  =  b)



Date html generated: 2016_05_15-PM-00_04_03
Last ObjectModification: 2015_12_26-PM-11_28_51

Theory : sets_1


Home Index