Nuprl Lemma : decidable__dset_eq
∀s:DSet. ∀a,b:|s|.  Dec(a = b ∈ |s|)
Proof
Definitions occuring in Statement : 
dset: DSet
, 
set_car: |p|
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dset: DSet
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
decidable_functionality, 
equal_wf, 
set_car_wf, 
assert_wf, 
set_eq_wf, 
iff_weakening_uiff, 
assert_of_dset_eq, 
decidable__assert, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
independent_functionElimination, 
because_Cache, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination
Latex:
\mforall{}s:DSet.  \mforall{}a,b:|s|.    Dec(a  =  b)
Date html generated:
2016_05_15-PM-00_04_03
Last ObjectModification:
2015_12_26-PM-11_28_51
Theory : sets_1
Home
Index