Nuprl Lemma : set_leq_weakening_eq

[s:QOSet]. ∀[a,b:|s|].  a ≤ supposing b ∈ |s|


Proof




Definitions occuring in Statement :  qoset: QOSet set_leq: a ≤ b set_car: |p| uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a set_leq: a ≤ b infix_ap: y qoset: QOSet dset: DSet implies:  Q prop:
Lemmas referenced :  assert_witness set_le_wf equal_wf set_car_wf qoset_wf qoset_refl set_leq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution extract_by_obid isectElimination thin applyEquality setElimination rename hypothesisEquality hypothesis independent_functionElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[s:QOSet].  \mforall{}[a,b:|s|].    a  \mleq{}  b  supposing  a  =  b



Date html generated: 2016_10_21-AM-11_25_14
Last ObjectModification: 2016_07_12-PM-01_05_45

Theory : sets_1


Home Index