Nuprl Lemma : set_leq_weakening_eq
∀[s:QOSet]. ∀[a,b:|s|].  a ≤ b supposing a = b ∈ |s|
Proof
Definitions occuring in Statement : 
qoset: QOSet
, 
set_leq: a ≤ b
, 
set_car: |p|
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
set_leq: a ≤ b
, 
infix_ap: x f y
, 
qoset: QOSet
, 
dset: DSet
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
assert_witness, 
set_le_wf, 
equal_wf, 
set_car_wf, 
qoset_wf, 
qoset_refl, 
set_leq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}[s:QOSet].  \mforall{}[a,b:|s|].    a  \mleq{}  b  supposing  a  =  b
Date html generated:
2016_10_21-AM-11_25_14
Last ObjectModification:
2016_07_12-PM-01_05_45
Theory : sets_1
Home
Index