Nuprl Lemma : qoset_refl

[s:QOSet]. ∀[a:|s|].  (a ≤ a)


Proof




Definitions occuring in Statement :  qoset: QOSet set_leq: a ≤ b set_car: |p| uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T upreorder: UniformPreorder(T;x,y.R[x; y]) and: P ∧ Q utrans: UniformlyTrans(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) set_leq: a ≤ b infix_ap: y qoset: QOSet dset: DSet implies:  Q
Lemmas referenced :  qoset_properties assert_witness set_le_wf set_car_wf qoset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination sqequalRule isect_memberEquality applyEquality setElimination rename independent_functionElimination

Latex:
\mforall{}[s:QOSet].  \mforall{}[a:|s|].    (a  \mleq{}  a)



Date html generated: 2016_05_15-PM-00_04_34
Last ObjectModification: 2015_12_26-PM-11_28_12

Theory : sets_1


Home Index