Nuprl Lemma : qoset_properties

[s:QOSet]. UniformPreorder(|s|;a,b.a ≤ b)


Proof




Definitions occuring in Statement :  qoset: QOSet set_leq: a ≤ b set_car: |p| upreorder: UniformPreorder(T;x,y.R[x; y]) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qoset: QOSet sq_stable: SqStable(P) implies:  Q squash: T upreorder: UniformPreorder(T;x,y.R[x; y]) and: P ∧ Q urefl: UniformlyRefl(T;x,y.E[x; y]) set_leq: a ≤ b infix_ap: y dset: DSet utrans: UniformlyTrans(T;x,y.E[x; y]) prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  upreorder_wf squash_wf qoset_wf set_leq_wf set_car_wf set_le_wf assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename independent_functionElimination hypothesis sqequalRule imageMemberEquality hypothesisEquality baseClosed imageElimination productElimination independent_pairEquality isect_memberEquality isectElimination lemma_by_obid applyEquality lambdaEquality dependent_functionElimination lambdaFormation

Latex:
\mforall{}[s:QOSet].  UniformPreorder(|s|;a,b.a  \mleq{}  b)



Date html generated: 2016_05_15-PM-00_04_32
Last ObjectModification: 2016_01_15-AM-07_08_49

Theory : sets_1


Home Index