Nuprl Lemma : qoset_properties
∀[s:QOSet]. UniformPreorder(|s|;a,b.a ≤ b)
Proof
Definitions occuring in Statement : 
qoset: QOSet
, 
set_leq: a ≤ b
, 
set_car: |p|
, 
upreorder: UniformPreorder(T;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qoset: QOSet
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
upreorder: UniformPreorder(T;x,y.R[x; y])
, 
and: P ∧ Q
, 
urefl: UniformlyRefl(T;x,y.E[x; y])
, 
set_leq: a ≤ b
, 
infix_ap: x f y
, 
dset: DSet
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
upreorder_wf, 
squash_wf, 
qoset_wf, 
set_leq_wf, 
set_car_wf, 
set_le_wf, 
assert_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
isectElimination, 
lemma_by_obid, 
applyEquality, 
lambdaEquality, 
dependent_functionElimination, 
lambdaFormation
Latex:
\mforall{}[s:QOSet].  UniformPreorder(|s|;a,b.a  \mleq{}  b)
Date html generated:
2016_05_15-PM-00_04_32
Last ObjectModification:
2016_01_15-AM-07_08_49
Theory : sets_1
Home
Index