Nuprl Lemma : before_trans
∀a:LOSet. ∀u,v:|a|. ∀ws:|a| List.  ((v <a u) 
⇒ (↑before(v;ws)) 
⇒ (↑before(u;ws)))
Proof
Definitions occuring in Statement : 
before: before(u;ps)
, 
list: T List
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
loset: LOSet
, 
set_lt: a <p b
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
dset: DSet
, 
or: P ∨ Q
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
implies: P 
⇒ Q
, 
true: True
, 
prop: ℙ
, 
cons: [a / b]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
Lemmas referenced : 
set_car_wf, 
list-cases, 
before_nil_lemma, 
true_wf, 
set_lt_wf, 
product_subtype_list, 
before_cons_lemma, 
assert_of_set_lt, 
assert_wf, 
set_blt_wf, 
list_wf, 
loset_wf, 
qoset_lt_trans
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
because_Cache, 
addLevel, 
impliesFunctionality, 
independent_isectElimination, 
functionEquality
Latex:
\mforall{}a:LOSet.  \mforall{}u,v:|a|.  \mforall{}ws:|a|  List.    ((v  <a  u)  {}\mRightarrow{}  (\muparrow{}before(v;ws))  {}\mRightarrow{}  (\muparrow{}before(u;ws)))
Date html generated:
2016_05_16-AM-08_14_59
Last ObjectModification:
2015_12_28-PM-06_28_53
Theory : polynom_2
Home
Index