Nuprl Lemma : before_trans

a:LOSet. ∀u,v:|a|. ∀ws:|a| List.  ((v <u)  (↑before(v;ws))  (↑before(u;ws)))


Proof




Definitions occuring in Statement :  before: before(u;ps) list: List assert: b all: x:A. B[x] implies:  Q loset: LOSet set_lt: a <b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet or: P ∨ Q top: Top assert: b ifthenelse: if then else fi  btrue: tt implies:  Q true: True prop: cons: [a b] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a
Lemmas referenced :  set_car_wf list-cases before_nil_lemma true_wf set_lt_wf product_subtype_list before_cons_lemma assert_of_set_lt assert_wf set_blt_wf list_wf loset_wf qoset_lt_trans
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination unionElimination sqequalRule isect_memberEquality voidElimination voidEquality natural_numberEquality promote_hyp hypothesis_subsumption productElimination because_Cache addLevel impliesFunctionality independent_isectElimination functionEquality

Latex:
\mforall{}a:LOSet.  \mforall{}u,v:|a|.  \mforall{}ws:|a|  List.    ((v  <a  u)  {}\mRightarrow{}  (\muparrow{}before(v;ws))  {}\mRightarrow{}  (\muparrow{}before(u;ws)))



Date html generated: 2016_05_16-AM-08_14_59
Last ObjectModification: 2015_12_28-PM-06_28_53

Theory : polynom_2


Home Index