Nuprl Lemma : qoset_lt_trans
∀[s:QOSet]. ∀[a,b,c:|s|].  (a <s c) supposing ((b <s c) and (a <s b))
Proof
Definitions occuring in Statement : 
qoset: QOSet
, 
set_lt: a <p b
, 
set_car: |p|
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qoset: QOSet
, 
dset: DSet
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
strict_part: strict_part(x,y.R[x; y];a;b)
, 
set_leq: a ≤ b
, 
infix_ap: x f y
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
set_lt: a <p b
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
utrans_functionality_wrt_iff, 
set_car_wf, 
set_lt_wf, 
strict_part_wf, 
set_leq_wf, 
iff_weakening_uiff, 
set_lt_is_sp_of_leq, 
assert_witness, 
set_le_wf, 
set_blt_wf, 
qoset_wf, 
utrans_imp_sp_utrans, 
set_leq_trans
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
dependent_functionElimination, 
applyEquality, 
isect_memberEquality, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[s:QOSet].  \mforall{}[a,b,c:|s|].    (a  <s  c)  supposing  ((b  <s  c)  and  (a  <s  b))
Date html generated:
2016_05_15-PM-00_04_45
Last ObjectModification:
2015_12_26-PM-11_28_26
Theory : sets_1
Home
Index