Nuprl Lemma : utrans_imp_sp_utrans

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (UniformlyTrans(T;a,b.R[a;b])  UniformlyTrans(T;a,b.strict_part(x,y.R[x;y];a;b)))


Proof




Definitions occuring in Statement :  strict_part: strict_part(x,y.R[x; y];a;b) utrans: UniformlyTrans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  strict_part: strict_part(x,y.R[x; y];a;b) utrans: UniformlyTrans(T;x,y.E[x; y]) uall: [x:A]. B[x] implies:  Q and: P ∧ Q not: ¬A false: False member: t ∈ T prop: so_apply: x[s1;s2] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  not_wf uall_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin cut hypothesis independent_functionElimination voidElimination applyEquality functionExtensionality hypothesisEquality cumulativity productEquality lambdaEquality universeEquality introduction extract_by_obid isectElimination because_Cache functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (UniformlyTrans(T;a,b.R[a;b])  {}\mRightarrow{}  UniformlyTrans(T;a,b.strict\_part(x,y.R[x;y];a;b)))



Date html generated: 2016_10_21-AM-09_42_51
Last ObjectModification: 2016_08_01-PM-09_48_39

Theory : rel_1


Home Index