Nuprl Lemma : lookup_before_start

a:LOSet. ∀b:AbDMon. ∀k:|a|. ∀ps:|oal(a;b)|.  ((↑before(k;map(λz.(fst(z));ps)))  ((ps[k]) e ∈ |b|))


Proof




Definitions occuring in Statement :  lookup: as[k] oalist: oal(a;b) before: before(u;ps) map: map(f;as) assert: b pi1: fst(t) all: x:A. B[x] implies:  Q lambda: λx.A[x] equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet loset: LOSet poset: POSet{i} qoset: QOSet nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} abdmonoid: AbDMon set_prod: s × t mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) oalist: oal(a;b) dset_set: dset_set dset_list: List dset_of_mon: g↓set int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T so_lambda: λ2x.t[x] dmon: DMon mon: Mon so_apply: x[s] map: map(f;as) list_ind: list_ind nil: [] it: infix_ap: y bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q before: before(u;ps) bor: p ∨bq
Lemmas referenced :  set_car_wf oalist_wf dset_wf abdmonoid_wf loset_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf assert_wf before_wf map_wf set_prod_wf dset_of_mon_wf le_wf length_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma non_neg_length decidable__lt lelt_wf itermAdd_wf int_term_value_add_lemma nat_wf oalist_cases all_wf grp_car_wf equal_wf lookup_wf grp_id_wf list_wf lookup_nil_lemma nil_wf lookup_cons_pr_lemma cons_wf not_wf set_eq_wf bool_wf uiff_transitivity equal-wf-T-base eqtt_to_assert assert_of_dset_eq iff_transitivity bnot_wf iff_weakening_uiff eqff_to_assert assert_of_bnot map_cons_lemma null_cons_lemma reduce_hd_cons_lemma assert_of_set_lt qoset_lt_irrefl length_of_cons_lemma before_cons_lemma before_trans length_wf_nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality because_Cache productElimination unionElimination equalityTransitivity equalitySymmetry applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality imageElimination addEquality functionEquality productEquality independent_pairEquality equalityElimination baseClosed impliesFunctionality

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k:|a|.  \mforall{}ps:|oal(a;b)|.    ((\muparrow{}before(k;map(\mlambda{}z.(fst(z));ps)))  {}\mRightarrow{}  ((ps[k])  =  e))



Date html generated: 2017_10_01-AM-10_02_12
Last ObjectModification: 2017_03_03-PM-01_05_01

Theory : polynom_2


Home Index