Nuprl Lemma : lookup_before_start
∀a:LOSet. ∀b:AbDMon. ∀k:|a|. ∀ps:|oal(a;b)|.  ((↑before(k;map(λz.(fst(z));ps))) ⇒ ((ps[k]) = e ∈ |b|))
Proof
Definitions occuring in Statement : 
lookup: as[k], 
oalist: oal(a;b), 
before: before(u;ps), 
map: map(f;as), 
assert: ↑b, 
pi1: fst(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
lambda: λx.A[x], 
equal: s = t ∈ T, 
abdmonoid: AbDMon, 
grp_id: e, 
grp_car: |g|, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
dset: DSet, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
abdmonoid: AbDMon, 
set_prod: s × t, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
oalist: oal(a;b), 
dset_set: dset_set, 
dset_list: s List, 
dset_of_mon: g↓set, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
less_than: a < b, 
squash: ↓T, 
so_lambda: λ2x.t[x], 
dmon: DMon, 
mon: Mon, 
so_apply: x[s], 
map: map(f;as), 
list_ind: list_ind, 
nil: [], 
it: ⋅, 
infix_ap: x f y, 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
before: before(u;ps), 
bor: p ∨bq
Lemmas referenced : 
set_car_wf, 
oalist_wf, 
dset_wf, 
abdmonoid_wf, 
loset_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
assert_wf, 
before_wf, 
map_wf, 
set_prod_wf, 
dset_of_mon_wf, 
le_wf, 
length_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
non_neg_length, 
decidable__lt, 
lelt_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
nat_wf, 
oalist_cases, 
all_wf, 
grp_car_wf, 
equal_wf, 
lookup_wf, 
grp_id_wf, 
list_wf, 
lookup_nil_lemma, 
nil_wf, 
lookup_cons_pr_lemma, 
cons_wf, 
not_wf, 
set_eq_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
eqtt_to_assert, 
assert_of_dset_eq, 
iff_transitivity, 
bnot_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
map_cons_lemma, 
null_cons_lemma, 
reduce_hd_cons_lemma, 
assert_of_set_lt, 
qoset_lt_irrefl, 
length_of_cons_lemma, 
before_cons_lemma, 
before_trans, 
length_wf_nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
because_Cache, 
productElimination, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
imageElimination, 
addEquality, 
functionEquality, 
productEquality, 
independent_pairEquality, 
equalityElimination, 
baseClosed, 
impliesFunctionality
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k:|a|.  \mforall{}ps:|oal(a;b)|.    ((\muparrow{}before(k;map(\mlambda{}z.(fst(z));ps)))  {}\mRightarrow{}  ((ps[k])  =  e))
Date html generated:
2017_10_01-AM-10_02_12
Last ObjectModification:
2017_03_03-PM-01_05_01
Theory : polynom_2
Home
Index