Nuprl Lemma : oalist_ind

a:LOSet. ∀b:AbDMon. ∀Q:((|a| × |b|) List) ⟶ ℙ.
  (Q[[]]
   (∀ws:|oal(a;b)|
        (Q[ws]  (∀x:|a|. ∀y:|b|.  ((↑before(x;map(λx.(fst(x));ws)))  (y e ∈ |b|))  Q[[<x, y> ws]]))))
   {∀ws:|oal(a;b)|. Q[ws]})


Proof




Definitions occuring in Statement :  oalist: oal(a;b) before: before(u;ps) map: map(f;as) cons: [a b] nil: [] list: List assert: b prop: guard: {T} so_apply: x[s] pi1: fst(t) all: x:A. B[x] not: ¬A implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  mon: Mon dmon: DMon abdmonoid: AbDMon qoset: QOSet poset: POSet{i} loset: LOSet dset_of_mon: g↓set set_prod: s × t dset_list: List pi1: fst(t) set_car: |p| mk_dset: mk_dset(T, eq) dset_set: dset_set oalist: oal(a;b) so_apply: x[s] so_lambda: λ2x.t[x] prop: dset: DSet subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] guard: {T} squash: T less_than: a < b ge: i ≥  nat: less_than': less_than'(a;b) le: A ≤ B or: P ∨ Q decidable: Dec(P) top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-}
Lemmas referenced :  length_of_cons_lemma oalist_cases int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf int_seg_subtype false_wf lelt_wf decidable__le intformnot_wf itermSubtract_wf intformeq_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma le_wf length_wf non_neg_length nat_properties decidable__lt less_than_wf set_wf primrec-wf2 nat_wf itermAdd_wf int_term_value_add_lemma length_wf_nat set_car_wf oalist_wf dset_wf all_wf grp_car_wf assert_wf before_wf map_wf set_prod_wf dset_of_mon_wf not_wf equal_wf grp_id_wf cons_wf nil_wf list_wf abdmonoid_wf loset_wf
Rules used in proof :  cumulativity independent_pairEquality productEquality productElimination universeEquality functionEquality because_Cache rename setElimination lambdaEquality applyEquality hypothesis hypothesisEquality dependent_functionElimination thin isectElimination sqequalHypSubstitution lemma_by_obid cut lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution addEquality introduction independent_functionElimination imageElimination dependent_set_memberEquality hypothesis_subsumption levelHypothesis setEquality equalitySymmetry equalityTransitivity addLevel unionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_isectElimination natural_numberEquality

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}Q:((|a|  \mtimes{}  |b|)  List)  {}\mrightarrow{}  \mBbbP{}.
    (Q[[]]
    {}\mRightarrow{}  (\mforall{}ws:|oal(a;b)|
                (Q[ws]
                {}\mRightarrow{}  (\mforall{}x:|a|.  \mforall{}y:|b|.    ((\muparrow{}before(x;map(\mlambda{}x.(fst(x));ws)))  {}\mRightarrow{}  (\mneg{}(y  =  e))  {}\mRightarrow{}  Q[[<x,  y>  /  ws]]))))
    {}\mRightarrow{}  \{\mforall{}ws:|oal(a;b)|.  Q[ws]\})



Date html generated: 2016_05_16-AM-08_16_13
Last ObjectModification: 2016_01_16-PM-11_58_49

Theory : polynom_2


Home Index