Nuprl Lemma : lookup_merge

a:LOSet. ∀b:AbDMon. ∀k:|a|. ∀ps,qs:|oal(a;b)|.  (((ps ++ qs)[k]) ((ps[k]) (qs[k])) ∈ |b|)


Proof




Definitions occuring in Statement :  oal_merge: ps ++ qs lookup: as[k] oalist: oal(a;b) infix_ap: y all: x:A. B[x] equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_op: * grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet so_lambda: λ2y.t[x; y] abdmonoid: AbDMon dmon: DMon mon: Mon infix_ap: y so_apply: x[s1;s2] implies:  Q guard: {T} so_lambda: λ2x.t[x] prop: subtype_rel: A ⊆B oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set so_apply: x[s] not: ¬A false: False rev_implies:  Q iff: ⇐⇒ Q true: True and: P ∧ Q uimplies: supposing a squash: T top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff oal_cons_pr: oal_cons_pr(x;y;ws) rev_uimplies: rev_uimplies(P;Q) nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] cand: c∧ B grp_car: |g| band_mon: <𝔹,∧b> grp_op: * pi2: snd(t)
Lemmas referenced :  set_car_wf abdmonoid_wf loset_wf oalist_pr_length_ind equal_wf grp_car_wf lookup_wf grp_id_wf oal_merge_wf grp_op_wf list_wf oalist_cases oalist_wf less_than_wf length_wf set_prod_wf dset_of_mon_wf nil_wf istype-less_than cons_wf istype-void istype-assert before_wf map_wf pi1_wf_top iff_weakening_equal subtype_rel_self imon_wf iabmonoid_wf abmonoid_wf subtype_rel_transitivity abdmonoid_abmonoid abmonoid_subtype_iabmonoid iabmonoid_subtype_imon mon_ident istype-universe true_wf squash_wf lookup_nil_lemma oal_merge_left_nil_lemma set_eq_wf ifthenelse_wf lookup_cons_pr_lemma oal_merge_right_nil_lemma oal_merge_conses_lemma set_blt_wf uiff_transitivity equal-wf-T-base bool_wf assert_wf set_lt_wf eqtt_to_assert assert_of_set_lt iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot set_lt_complement grp_eq_wf assert_of_mon_eq assert_of_dset_eq lookup_before_start oal_cons_pr_wf map_cons_lemma before_cons_lemma poset_sig_wf length_wf_nat length_of_cons_lemma nat_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermAdd_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf set_leq_antisymmetry set_leq_transitivity set_leq_weakening_eq lookup_before_start_a oal_merge_dom_pred sd_ordered_cons_lemma assert_of_band sd_ordered_wf assert_functionality_wrt_uiff mon_htfor_wf band_mon_wf ball_wf mon_subtype_grp_sig abmonoid_subtype_mon mon_wf grp_sig_wf sd_ordered_char mon_htfor_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination sqequalRule lambdaEquality_alt because_Cache applyEquality inhabitedIsType productEquality independent_functionElimination functionEquality equalityTransitivity equalitySymmetry addEquality voidEquality functionIsType equalityIstype independent_pairEquality productElimination Error :memTop,  baseClosed imageMemberEquality natural_numberEquality independent_isectElimination instantiate universeEquality imageElimination voidElimination isect_memberEquality_alt unionElimination equalityElimination independent_pairFormation applyLambdaEquality approximateComputation dependent_pairFormation_alt int_eqEquality

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k:|a|.  \mforall{}ps,qs:|oal(a;b)|.    (((ps  ++  qs)[k])  =  ((ps[k])  *  (qs[k])))



Date html generated: 2020_05_20-AM-09_36_03
Last ObjectModification: 2020_01_08-PM-06_26_10

Theory : polynom_2


Home Index