Nuprl Lemma : oal_merge_dom_pred

a:LOSet. ∀b:AbDMon. ∀Q:|a| ⟶ 𝔹. ∀ps,qs:(|a| × |b|) List.
  ((↑(∀bx(:|a|) ∈ map(λx.(fst(x));ps)
         Q[x]))
   (↑(∀bx(:|a|) ∈ map(λx.(fst(x));qs)
           Q[x]))
   (↑(∀bx(:|a|) ∈ map(λx.(fst(x));ps ++ qs)
           Q[x])))


Proof




Definitions occuring in Statement :  oal_merge: ps ++ qs ball: ball map: map(f;as) list: List assert: b bool: 𝔹 so_apply: x[s] pi1: fst(t) all: x:A. B[x] implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] abdmonoid: AbDMon grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet abdmonoid: AbDMon dmon: DMon mon: Mon so_lambda: λ2y.t[x; y] implies:  Q prop: pi1: fst(t) so_lambda: λ2x.t[x] so_apply: x[s] ball: ball so_apply: x[s1;s2] guard: {T} or: P ∨ Q top: Top assert: b ifthenelse: if then else fi  btrue: tt true: True cons: [a b] bool: 𝔹 unit: Unit it: band: p ∧b q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff false: False iff: ⇐⇒ Q not: ¬A rev_implies:  Q infix_ap: y rev_uimplies: rev_uimplies(P;Q) cand: c∧ B decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  list_pr_length_ind set_car_wf grp_car_wf assert_wf ball_wf map_wf oal_merge_wf list_wf bool_wf abdmonoid_wf loset_wf list-cases length_of_nil_lemma map_nil_lemma oal_merge_left_nil_lemma ball_nil_lemma true_wf all_wf less_than_wf length_wf product_subtype_list length_of_cons_lemma map_cons_lemma oal_merge_right_nil_lemma ball_cons_lemma eqtt_to_assert equal_wf bool_cases_sqequal pi1_wf oal_merge_conses_lemma set_blt_wf uiff_transitivity equal-wf-T-base set_lt_wf assert_of_set_lt iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot grp_eq_wf grp_op_wf grp_id_wf assert_of_mon_eq assert_of_band cons_wf decidable__lt satisfiable-full-omega-tt intformnot_wf intformless_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin productEquality isectElimination setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality functionEquality because_Cache productElimination applyEquality functionExtensionality independent_functionElimination unionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality addEquality promote_hyp hypothesis_subsumption equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_pairEquality baseClosed independent_pairFormation impliesFunctionality dependent_pairFormation int_eqEquality intEquality computeAll

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}Q:|a|  {}\mrightarrow{}  \mBbbB{}.  \mforall{}ps,qs:(|a|  \mtimes{}  |b|)  List.
    ((\muparrow{}(\mforall{}\msubb{}x(:|a|)  \mmember{}  map(\mlambda{}x.(fst(x));ps)
                  Q[x]))
    {}\mRightarrow{}  (\muparrow{}(\mforall{}\msubb{}x(:|a|)  \mmember{}  map(\mlambda{}x.(fst(x));qs)
                      Q[x]))
    {}\mRightarrow{}  (\muparrow{}(\mforall{}\msubb{}x(:|a|)  \mmember{}  map(\mlambda{}x.(fst(x));ps  ++  qs)
                      Q[x])))



Date html generated: 2017_10_01-AM-10_02_32
Last ObjectModification: 2017_03_03-PM-01_05_17

Theory : polynom_2


Home Index