Nuprl Lemma : oal_merge_dom_pred
∀a:LOSet. ∀b:AbDMon. ∀Q:|a| ⟶ 𝔹. ∀ps,qs:(|a| × |b|) List.
  ((↑(∀bx(:|a|) ∈ map(λx.(fst(x));ps)
         Q[x]))
  
⇒ (↑(∀bx(:|a|) ∈ map(λx.(fst(x));qs)
           Q[x]))
  
⇒ (↑(∀bx(:|a|) ∈ map(λx.(fst(x));ps ++ qs)
           Q[x])))
Proof
Definitions occuring in Statement : 
oal_merge: ps ++ qs
, 
ball: ball, 
map: map(f;as)
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
abdmonoid: AbDMon
, 
grp_car: |g|
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
dset: DSet
, 
abdmonoid: AbDMon
, 
dmon: DMon
, 
mon: Mon
, 
so_lambda: λ2x y.t[x; y]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
pi1: fst(t)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ball: ball, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
or: P ∨ Q
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
cons: [a / b]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
band: p ∧b q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
bfalse: ff
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
infix_ap: x f y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
list_pr_length_ind, 
set_car_wf, 
grp_car_wf, 
assert_wf, 
ball_wf, 
map_wf, 
oal_merge_wf, 
list_wf, 
bool_wf, 
abdmonoid_wf, 
loset_wf, 
list-cases, 
length_of_nil_lemma, 
map_nil_lemma, 
oal_merge_left_nil_lemma, 
ball_nil_lemma, 
true_wf, 
all_wf, 
less_than_wf, 
length_wf, 
product_subtype_list, 
length_of_cons_lemma, 
map_cons_lemma, 
oal_merge_right_nil_lemma, 
ball_cons_lemma, 
eqtt_to_assert, 
equal_wf, 
bool_cases_sqequal, 
pi1_wf, 
oal_merge_conses_lemma, 
set_blt_wf, 
uiff_transitivity, 
equal-wf-T-base, 
set_lt_wf, 
assert_of_set_lt, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
grp_eq_wf, 
grp_op_wf, 
grp_id_wf, 
assert_of_mon_eq, 
assert_of_band, 
cons_wf, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformless_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
productEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
because_Cache, 
productElimination, 
applyEquality, 
functionExtensionality, 
independent_functionElimination, 
unionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
addEquality, 
promote_hyp, 
hypothesis_subsumption, 
equalityElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairEquality, 
baseClosed, 
independent_pairFormation, 
impliesFunctionality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}Q:|a|  {}\mrightarrow{}  \mBbbB{}.  \mforall{}ps,qs:(|a|  \mtimes{}  |b|)  List.
    ((\muparrow{}(\mforall{}\msubb{}x(:|a|)  \mmember{}  map(\mlambda{}x.(fst(x));ps)
                  Q[x]))
    {}\mRightarrow{}  (\muparrow{}(\mforall{}\msubb{}x(:|a|)  \mmember{}  map(\mlambda{}x.(fst(x));qs)
                      Q[x]))
    {}\mRightarrow{}  (\muparrow{}(\mforall{}\msubb{}x(:|a|)  \mmember{}  map(\mlambda{}x.(fst(x));ps  ++  qs)
                      Q[x])))
Date html generated:
2017_10_01-AM-10_02_32
Last ObjectModification:
2017_03_03-PM-01_05_17
Theory : polynom_2
Home
Index