Nuprl Lemma : ball_nil_lemma

f,T:Top.  (∀bx(:T) ∈ []. f[x] tt)


Proof




Definitions occuring in Statement :  ball: ball nil: [] btrue: tt top: Top so_apply: x[s] all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] ball: ball so_lambda: λ2x.t[x] member: t ∈ T top: Top so_apply: x[s] band_mon: <𝔹,∧b> grp_id: e pi2: snd(t) pi1: fst(t)
Lemmas referenced :  mon_for_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis

Latex:
\mforall{}f,T:Top.    (\mforall{}\msubb{}x(:T)  \mmember{}  [].  f[x]  \msim{}  tt)



Date html generated: 2016_05_16-AM-07_37_10
Last ObjectModification: 2015_12_28-PM-05_45_13

Theory : list_2


Home Index