Nuprl Lemma : mon_htfor_wf
∀g:IMonoid. ∀A:Type. ∀as:A List. ∀f:A ⟶ (A List) ⟶ |g|.  (HTFor{g} h::t ∈ as. f[h;t] ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_htfor: HTFor{g} h::t ∈ as. f[h; t]
, 
list: T List
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
imon: IMonoid
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
mon_htfor: HTFor{g} h::t ∈ as. f[h; t]
, 
uall: ∀[x:A]. B[x]
, 
imon: IMonoid
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
for_hdtl_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
istype-universe, 
list_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
lambdaEquality_alt, 
applyEquality, 
inhabitedIsType, 
functionIsType, 
universeIsType, 
universeEquality
Latex:
\mforall{}g:IMonoid.  \mforall{}A:Type.  \mforall{}as:A  List.  \mforall{}f:A  {}\mrightarrow{}  (A  List)  {}\mrightarrow{}  |g|.    (HTFor\{g\}  h::t  \mmember{}  as.  f[h;t]  \mmember{}  |g|)
Date html generated:
2019_10_16-PM-01_02_41
Last ObjectModification:
2018_10_08-AM-11_50_57
Theory : list_2
Home
Index