Nuprl Lemma : sd_ordered_char
∀s:QOSet. ∀us:|s| List.  sd_ordered(us) = HTFor{<𝔹,∧b>} v::vs ∈ us. ∀bw(:|s|) ∈ vs. (w <b v)
Proof
Definitions occuring in Statement : 
sd_ordered: sd_ordered(as)
, 
ball: ball, 
mon_htfor: HTFor{g} h::t ∈ as. f[h; t]
, 
list: T List
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
, 
band_mon: <𝔹,∧b>
, 
qoset: QOSet
, 
set_blt: a <b b
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qoset: QOSet
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s]
, 
band_mon: <𝔹,∧b>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
top: Top
, 
grp_id: e
, 
pi2: snd(t)
, 
grp_op: *
, 
infix_ap: x f y
, 
prop: ℙ
, 
squash: ↓T
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
ball: ball, 
uiff: uiff(P;Q)
, 
or: P ∨ Q
, 
assert: ↑b
, 
cons: [a / b]
, 
cand: A c∧ B
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
list_induction, 
set_car_wf, 
equal_wf, 
bool_wf, 
sd_ordered_wf, 
mon_htfor_wf, 
band_mon_wf, 
ball_wf, 
set_blt_wf, 
list_wf, 
sd_ordered_nil_lemma, 
mon_htfor_nil_lemma, 
btrue_wf, 
sd_ordered_cons_lemma, 
mon_htfor_cons_lemma, 
qoset_wf, 
squash_wf, 
true_wf, 
before_wf, 
band_wf, 
iff_weakening_equal, 
iff_imp_equal_bool, 
assert_wf, 
assert_of_band, 
iff_wf, 
list-cases, 
ball_nil_lemma, 
nil_wf, 
product_subtype_list, 
ball_cons_lemma, 
cons_wf, 
before_cons_lemma, 
iff_transitivity, 
assert_of_set_lt, 
set_lt_wf, 
iff_weakening_uiff, 
assert_functionality_wrt_uiff, 
ball_char, 
mem_wf, 
set_lt_transitivity_2, 
set_leq_weakening_lt, 
before_nil_lemma, 
mem_cons_lemma, 
bor_wf, 
set_eq_wf, 
or_wf, 
assert_of_bor, 
assert_of_dset_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
unionElimination, 
equalityElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_pairFormation, 
productEquality, 
addLevel, 
impliesFunctionality, 
promote_hyp, 
hypothesis_subsumption, 
orFunctionality, 
inlFormation
Latex:
\mforall{}s:QOSet.  \mforall{}us:|s|  List.    sd\_ordered(us)  =  HTFor\{<\mBbbB{},\mwedge{}\msubb{}>\}  v::vs  \mmember{}  us.  \mforall{}\msubb{}w(:|s|)  \mmember{}  vs.  (w  <\msubb{}  v)
Date html generated:
2017_10_01-AM-10_01_32
Last ObjectModification:
2017_03_03-PM-01_04_08
Theory : polynom_2
Home
Index