Nuprl Lemma : set_leq_weakening_lt

[s:QOSet]. ∀[a,b:|s|].  a ≤ supposing a <b


Proof




Definitions occuring in Statement :  qoset: QOSet set_lt: a <b set_leq: a ≤ b set_car: |p| uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a set_leq: a ≤ b infix_ap: y qoset: QOSet dset: DSet implies:  Q prop: uiff: uiff(P;Q) and: P ∧ Q strict_part: strict_part(x,y.R[x; y];a;b)
Lemmas referenced :  assert_witness set_le_wf set_lt_wf set_car_wf qoset_wf set_lt_is_sp_of_leq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution extract_by_obid isectElimination thin applyEquality setElimination rename hypothesisEquality hypothesis independent_functionElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry productElimination independent_isectElimination

Latex:
\mforall{}[s:QOSet].  \mforall{}[a,b:|s|].    a  \mleq{}  b  supposing  a  <s  b



Date html generated: 2019_10_15-AM-10_32_28
Last ObjectModification: 2018_08_22-AM-09_39_18

Theory : sets_1


Home Index