Nuprl Lemma : set_leq_weakening_lt
∀[s:QOSet]. ∀[a,b:|s|].  a ≤ b supposing a <s b
Proof
Definitions occuring in Statement : 
qoset: QOSet
, 
set_lt: a <p b
, 
set_leq: a ≤ b
, 
set_car: |p|
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
set_leq: a ≤ b
, 
infix_ap: x f y
, 
qoset: QOSet
, 
dset: DSet
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
strict_part: strict_part(x,y.R[x; y];a;b)
Lemmas referenced : 
assert_witness, 
set_le_wf, 
set_lt_wf, 
set_car_wf, 
qoset_wf, 
set_lt_is_sp_of_leq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}[s:QOSet].  \mforall{}[a,b:|s|].    a  \mleq{}  b  supposing  a  <s  b
Date html generated:
2019_10_15-AM-10_32_28
Last ObjectModification:
2018_08_22-AM-09_39_18
Theory : sets_1
Home
Index