Nuprl Lemma : ball_char

s:DSet. ∀as:|s| List. ∀f:|s| ⟶ 𝔹.  (↑(∀bx(:|s|) ∈ as. f[x]) ⇐⇒ ∀x:|s|. ((↑(x ∈b as))  (↑f[x])))


Proof




Definitions occuring in Statement :  ball: ball mem: a ∈b as list: List assert: b bool: 𝔹 so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: iff: ⇐⇒ Q guard: {T} rev_implies:  Q dset: DSet or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff true: True cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) ball: ball bool: 𝔹 unit: Unit band: p ∧b q bnot: ¬bb infix_ap: y
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf assert_witness intformeq_wf int_formula_prop_eq_lemma set_car_wf list-cases ball_nil_lemma mem_nil_lemma true_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf ball_wf subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le ball_cons_lemma mem_cons_lemma nat_wf bool_wf list_wf dset_wf assert_functionality_wrt_uiff assert_wf mem_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot bfalse_wf bor_wf set_eq_wf or_wf equal_wf iff_weakening_uiff assert_of_band iff_transitivity assert_of_bor assert_of_dset_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType productElimination independent_pairEquality equalityTransitivity equalitySymmetry applyLambdaEquality functionIsTypeImplies inhabitedIsType because_Cache unionElimination functionIsType promote_hyp hypothesis_subsumption equalityIsType1 dependent_set_memberEquality_alt applyEquality instantiate imageElimination equalityIsType4 baseApply closedConclusion baseClosed intEquality unionIsType productIsType inlFormation_alt inrFormation_alt equalityElimination productEquality

Latex:
\mforall{}s:DSet.  \mforall{}as:|s|  List.  \mforall{}f:|s|  {}\mrightarrow{}  \mBbbB{}.    (\muparrow{}(\mforall{}\msubb{}x(:|s|)  \mmember{}  as.  f[x])  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  as))  {}\mRightarrow{}  (\muparrow{}f[x])))



Date html generated: 2019_10_16-PM-01_02_54
Last ObjectModification: 2018_10_08-AM-11_23_26

Theory : list_2


Home Index