Nuprl Lemma : mon_htfor_cons_lemma
∀f,as,a,g,T:Top.  (HTFor{g} h::t ∈ [a / as]. f[h;t] ~ f[a;as] * (HTFor{g} h::t ∈ as. f[h;t]))
Proof
Definitions occuring in Statement : 
mon_htfor: HTFor{g} h::t ∈ as. f[h; t]
, 
cons: [a / b]
, 
top: Top
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
, 
grp_op: *
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
mon_htfor: HTFor{g} h::t ∈ as. f[h; t]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
infix_ap: x f y
Lemmas referenced : 
top_wf, 
for_hdtl_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}f,as,a,g,T:Top.    (HTFor\{g\}  h::t  \mmember{}  [a  /  as].  f[h;t]  \msim{}  f[a;as]  *  (HTFor\{g\}  h::t  \mmember{}  as.  f[h;t]))
Date html generated:
2016_05_16-AM-07_36_38
Last ObjectModification:
2015_12_28-PM-05_45_31
Theory : list_2
Home
Index