Nuprl Lemma : set_lt_complement
∀[s:LOSet]. ∀[a,b:|s|]. uiff(¬(b <s a);a ≤ b)
Proof
Definitions occuring in Statement :
loset: LOSet
,
set_lt: a <p b
,
set_leq: a ≤ b
,
set_car: |p|
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
not: ¬A
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
set_leq: a ≤ b
,
infix_ap: x f y
,
loset: LOSet
,
poset: POSet{i}
,
qoset: QOSet
,
dset: DSet
,
implies: P
⇒ Q
,
prop: ℙ
,
not: ¬A
,
false: False
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
ulinorder: UniformLinorder(T;x,y.R[x; y])
,
uorder: UniformOrder(T;x,y.R[x; y])
,
cand: A c∧ B
,
upreorder: UniformPreorder(T;x,y.R[x; y])
Lemmas referenced :
assert_witness,
set_le_wf,
not_wf,
set_lt_wf,
set_leq_wf,
set_car_wf,
loset_wf,
set_lt_is_sp_of_leq,
strict_part_wf,
uiff_wf,
ulinorder_lt_neg,
decidable__set_leq,
loset_properties,
poset_properties,
qoset_properties,
set_leq_trans,
upreorder_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
sqequalHypSubstitution,
productElimination,
thin,
independent_pairEquality,
isect_memberEquality,
isectElimination,
hypothesisEquality,
lemma_by_obid,
applyEquality,
setElimination,
rename,
hypothesis,
independent_functionElimination,
equalityTransitivity,
equalitySymmetry,
lambdaEquality,
dependent_functionElimination,
because_Cache,
voidElimination,
addLevel,
independent_pairFormation,
independent_isectElimination,
lambdaFormation,
cumulativity,
dependent_set_memberEquality
Latex:
\mforall{}[s:LOSet]. \mforall{}[a,b:|s|]. uiff(\mneg{}(b <s a);a \mleq{} b)
Date html generated:
2016_05_15-PM-00_05_37
Last ObjectModification:
2015_12_26-PM-11_27_55
Theory : sets_1
Home
Index