Nuprl Lemma : set_lt_complement

[s:LOSet]. ∀[a,b:|s|].  uiff(¬(b <a);a ≤ b)


Proof




Definitions occuring in Statement :  loset: LOSet set_lt: a <b set_leq: a ≤ b set_car: |p| uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a set_leq: a ≤ b infix_ap: y loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet implies:  Q prop: not: ¬A false: False so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] ulinorder: UniformLinorder(T;x,y.R[x; y]) uorder: UniformOrder(T;x,y.R[x; y]) cand: c∧ B upreorder: UniformPreorder(T;x,y.R[x; y])
Lemmas referenced :  assert_witness set_le_wf not_wf set_lt_wf set_leq_wf set_car_wf loset_wf set_lt_is_sp_of_leq strict_part_wf uiff_wf ulinorder_lt_neg decidable__set_leq loset_properties poset_properties qoset_properties set_leq_trans upreorder_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality isect_memberEquality isectElimination hypothesisEquality lemma_by_obid applyEquality setElimination rename hypothesis independent_functionElimination equalityTransitivity equalitySymmetry lambdaEquality dependent_functionElimination because_Cache voidElimination addLevel independent_pairFormation independent_isectElimination lambdaFormation cumulativity dependent_set_memberEquality

Latex:
\mforall{}[s:LOSet].  \mforall{}[a,b:|s|].    uiff(\mneg{}(b  <s  a);a  \mleq{}  b)



Date html generated: 2016_05_15-PM-00_05_37
Last ObjectModification: 2015_12_26-PM-11_27_55

Theory : sets_1


Home Index