Nuprl Lemma : set_lt_complement
∀[s:LOSet]. ∀[a,b:|s|].  uiff(¬(b <s a);a ≤ b)
Proof
Definitions occuring in Statement : 
loset: LOSet
, 
set_lt: a <p b
, 
set_leq: a ≤ b
, 
set_car: |p|
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
set_leq: a ≤ b
, 
infix_ap: x f y
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
dset: DSet
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
ulinorder: UniformLinorder(T;x,y.R[x; y])
, 
uorder: UniformOrder(T;x,y.R[x; y])
, 
cand: A c∧ B
, 
upreorder: UniformPreorder(T;x,y.R[x; y])
Lemmas referenced : 
assert_witness, 
set_le_wf, 
not_wf, 
set_lt_wf, 
set_leq_wf, 
set_car_wf, 
loset_wf, 
set_lt_is_sp_of_leq, 
strict_part_wf, 
uiff_wf, 
ulinorder_lt_neg, 
decidable__set_leq, 
loset_properties, 
poset_properties, 
qoset_properties, 
set_leq_trans, 
upreorder_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
lemma_by_obid, 
applyEquality, 
setElimination, 
rename, 
hypothesis, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
voidElimination, 
addLevel, 
independent_pairFormation, 
independent_isectElimination, 
lambdaFormation, 
cumulativity, 
dependent_set_memberEquality
Latex:
\mforall{}[s:LOSet].  \mforall{}[a,b:|s|].    uiff(\mneg{}(b  <s  a);a  \mleq{}  b)
Date html generated:
2016_05_15-PM-00_05_37
Last ObjectModification:
2015_12_26-PM-11_27_55
Theory : sets_1
Home
Index