Nuprl Lemma : poset_properties

[s:POSet{i}]. UniformlyAntiSym(|s|;a,b.a ≤ b)


Proof




Definitions occuring in Statement :  poset: POSet{i} set_leq: a ≤ b set_car: |p| uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T poset: POSet{i} qoset: QOSet dset: DSet so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_stable: SqStable(P) implies:  Q squash: T uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) uimplies: supposing a prop:
Lemmas referenced :  poset_wf set_leq_wf set_car_wf sq_stable__uanti_sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesisEquality hypothesis sqequalRule lambdaEquality independent_functionElimination imageMemberEquality baseClosed imageElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[s:POSet\{i\}].  UniformlyAntiSym(|s|;a,b.a  \mleq{}  b)



Date html generated: 2016_05_15-PM-00_05_04
Last ObjectModification: 2016_01_15-AM-07_08_46

Theory : sets_1


Home Index