Nuprl Lemma : sq_stable__uanti_sym

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  SqStable(UniformlyAntiSym(T;x,y.R[x;y]))


Proof




Definitions occuring in Statement :  uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] implies:  Q sq_stable: SqStable(P) prop:
Lemmas referenced :  sq_stable__uall uall_wf isect_wf equal_wf sq_stable__equal squash_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality cumulativity applyEquality functionExtensionality because_Cache hypothesis independent_functionElimination dependent_functionElimination axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    SqStable(UniformlyAntiSym(T;x,y.R[x;y]))



Date html generated: 2016_10_21-AM-09_42_45
Last ObjectModification: 2016_08_01-PM-09_48_41

Theory : rel_1


Home Index